Properties

Label 4-1260e2-1.1-c1e2-0-1
Degree $4$
Conductor $1587600$
Sign $1$
Analytic cond. $101.226$
Root an. cond. $3.17193$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 8·19-s − 25-s + 4·29-s − 16·31-s − 12·41-s − 49-s − 8·59-s − 12·61-s − 24·71-s + 8·79-s − 20·89-s + 16·95-s + 36·101-s − 28·109-s − 22·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + 32·155-s + 157-s + 163-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.83·19-s − 1/5·25-s + 0.742·29-s − 2.87·31-s − 1.87·41-s − 1/7·49-s − 1.04·59-s − 1.53·61-s − 2.84·71-s + 0.900·79-s − 2.11·89-s + 1.64·95-s + 3.58·101-s − 2.68·109-s − 2·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + 2.57·155-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1587600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1587600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1587600\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(101.226\)
Root analytic conductor: \(3.17193\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1587600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4248084654\)
\(L(\frac12)\) \(\approx\) \(0.4248084654\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28630686549445911423429436399, −9.181292137054726356015120717343, −9.165611770956031616213594010138, −8.643470355764417466753512147604, −8.345806656197979186835781356270, −7.72514320118517489118670067005, −7.58758503190917037834068109774, −7.08569018465165700243735778601, −6.50126589139299238862603764220, −6.35548679544745067335869699082, −5.62085455269324287305993389993, −5.30863946361300690156724032679, −4.67198866454970854600655997116, −4.12284037305519620721569663355, −4.03685911738431397278418732169, −3.18718983780593793711955095159, −2.96765216725405715849112457162, −1.79452251166668040447689198556, −1.77944218236695912773050263148, −0.26379374275432735683046553226, 0.26379374275432735683046553226, 1.77944218236695912773050263148, 1.79452251166668040447689198556, 2.96765216725405715849112457162, 3.18718983780593793711955095159, 4.03685911738431397278418732169, 4.12284037305519620721569663355, 4.67198866454970854600655997116, 5.30863946361300690156724032679, 5.62085455269324287305993389993, 6.35548679544745067335869699082, 6.50126589139299238862603764220, 7.08569018465165700243735778601, 7.58758503190917037834068109774, 7.72514320118517489118670067005, 8.345806656197979186835781356270, 8.643470355764417466753512147604, 9.165611770956031616213594010138, 9.181292137054726356015120717343, 10.28630686549445911423429436399

Graph of the $Z$-function along the critical line