L(s) = 1 | + (−1.31 + 0.526i)2-s + (1.44 − 1.38i)4-s − i·5-s − i·7-s + (−1.17 + 2.57i)8-s + (0.526 + 1.31i)10-s + 5.94·11-s + 4.86·13-s + (0.526 + 1.31i)14-s + (0.182 − 3.99i)16-s + 6.18i·17-s − 6.20i·19-s + (−1.38 − 1.44i)20-s + (−7.79 + 3.12i)22-s − 7.82·23-s + ⋯ |
L(s) = 1 | + (−0.928 + 0.372i)2-s + (0.723 − 0.690i)4-s − 0.447i·5-s − 0.377i·7-s + (−0.414 + 0.910i)8-s + (0.166 + 0.415i)10-s + 1.79·11-s + 1.34·13-s + (0.140 + 0.350i)14-s + (0.0456 − 0.998i)16-s + 1.50i·17-s − 1.42i·19-s + (−0.308 − 0.323i)20-s + (−1.66 + 0.666i)22-s − 1.63·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.191i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 + 0.191i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.254178906\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.254178906\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.31 - 0.526i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 + iT \) |
good | 11 | \( 1 - 5.94T + 11T^{2} \) |
| 13 | \( 1 - 4.86T + 13T^{2} \) |
| 17 | \( 1 - 6.18iT - 17T^{2} \) |
| 19 | \( 1 + 6.20iT - 19T^{2} \) |
| 23 | \( 1 + 7.82T + 23T^{2} \) |
| 29 | \( 1 - 1.48iT - 29T^{2} \) |
| 31 | \( 1 - 3.22iT - 31T^{2} \) |
| 37 | \( 1 - 10.2T + 37T^{2} \) |
| 41 | \( 1 + 0.728iT - 41T^{2} \) |
| 43 | \( 1 - 0.297iT - 43T^{2} \) |
| 47 | \( 1 - 2.32T + 47T^{2} \) |
| 53 | \( 1 + 9.91iT - 53T^{2} \) |
| 59 | \( 1 - 0.328T + 59T^{2} \) |
| 61 | \( 1 - 1.53T + 61T^{2} \) |
| 67 | \( 1 - 9.98iT - 67T^{2} \) |
| 71 | \( 1 - 5.02T + 71T^{2} \) |
| 73 | \( 1 + 12.0T + 73T^{2} \) |
| 79 | \( 1 + 2.44iT - 79T^{2} \) |
| 83 | \( 1 - 15.5T + 83T^{2} \) |
| 89 | \( 1 + 4.49iT - 89T^{2} \) |
| 97 | \( 1 - 5.62T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.513752193690629716520337438159, −8.697840926117331926341879131975, −8.360365911743247155925128451521, −7.22647695225987744535995222963, −6.32878129214263296329235683170, −5.95591258430861443516800042971, −4.45204228387019119151782712140, −3.61289974739999931713618138164, −1.85371925341183831507747620820, −0.949192569465543654408655935160,
1.10496025024094419209468897044, 2.23074528319940904427462245633, 3.49871883805972371693767840756, 4.13544974089581345452391492013, 6.12967164080872496187471616531, 6.24341241093362262921493932334, 7.48840587365025838905246954837, 8.153617706971983895739387374964, 9.126085287691563284205642577674, 9.550936830707210160925012553869