L(s) = 1 | + (−1.26 − 0.636i)2-s + (1.18 + 1.60i)4-s − i·5-s − i·7-s + (−0.478 − 2.78i)8-s + (−0.636 + 1.26i)10-s − 2.48·11-s + 5.41·13-s + (−0.636 + 1.26i)14-s + (−1.17 + 3.82i)16-s + 7.95i·17-s + 6.96i·19-s + (1.60 − 1.18i)20-s + (3.14 + 1.58i)22-s + 0.834·23-s + ⋯ |
L(s) = 1 | + (−0.892 − 0.450i)2-s + (0.594 + 0.803i)4-s − 0.447i·5-s − 0.377i·7-s + (−0.169 − 0.985i)8-s + (−0.201 + 0.399i)10-s − 0.749·11-s + 1.50·13-s + (−0.170 + 0.337i)14-s + (−0.292 + 0.956i)16-s + 1.92i·17-s + 1.59i·19-s + (0.359 − 0.265i)20-s + (0.669 + 0.337i)22-s + 0.174·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0214i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0214i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.038641089\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.038641089\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.26 + 0.636i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 + iT \) |
good | 11 | \( 1 + 2.48T + 11T^{2} \) |
| 13 | \( 1 - 5.41T + 13T^{2} \) |
| 17 | \( 1 - 7.95iT - 17T^{2} \) |
| 19 | \( 1 - 6.96iT - 19T^{2} \) |
| 23 | \( 1 - 0.834T + 23T^{2} \) |
| 29 | \( 1 + 7.43iT - 29T^{2} \) |
| 31 | \( 1 + 1.06iT - 31T^{2} \) |
| 37 | \( 1 - 0.204T + 37T^{2} \) |
| 41 | \( 1 + 1.84iT - 41T^{2} \) |
| 43 | \( 1 - 4.38iT - 43T^{2} \) |
| 47 | \( 1 - 7.00T + 47T^{2} \) |
| 53 | \( 1 - 4.95iT - 53T^{2} \) |
| 59 | \( 1 - 4.06T + 59T^{2} \) |
| 61 | \( 1 - 4.54T + 61T^{2} \) |
| 67 | \( 1 - 9.50iT - 67T^{2} \) |
| 71 | \( 1 - 9.40T + 71T^{2} \) |
| 73 | \( 1 - 14.2T + 73T^{2} \) |
| 79 | \( 1 + 17.6iT - 79T^{2} \) |
| 83 | \( 1 + 8.48T + 83T^{2} \) |
| 89 | \( 1 - 13.7iT - 89T^{2} \) |
| 97 | \( 1 - 4.91T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.836339990730458394102447744803, −8.734046848353287756708514058751, −8.187204496278014537799883224227, −7.68202147334387384220755910000, −6.33051335236820047136501133585, −5.79351981017762139165670081853, −4.10700525391982992311909413498, −3.60406154836015379281135128634, −2.08589146123127718241819510698, −1.07012917006628754725209693461,
0.72814076152258072831178651125, 2.33247967363459232097178891939, 3.20162219316183949588019416138, 4.93270305062817094804428974135, 5.56103249992668457153208176143, 6.73354863475202549761302540475, 7.10590822467295398871033455473, 8.156336222974331436110200298529, 8.915118775702998972832293092733, 9.453681611581219455884024390373