Properties

Label 2-1260-12.11-c1-0-2
Degree $2$
Conductor $1260$
Sign $-0.936 - 0.349i$
Analytic cond. $10.0611$
Root an. cond. $3.17193$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.862 + 1.12i)2-s + (−0.510 − 1.93i)4-s i·5-s i·7-s + (2.60 + 1.09i)8-s + (1.12 + 0.862i)10-s − 4.23·11-s − 1.31·13-s + (1.12 + 0.862i)14-s + (−3.47 + 1.97i)16-s + 3.77i·17-s − 4.64i·19-s + (−1.93 + 0.510i)20-s + (3.65 − 4.74i)22-s − 1.08·23-s + ⋯
L(s)  = 1  + (−0.610 + 0.792i)2-s + (−0.255 − 0.966i)4-s − 0.447i·5-s − 0.377i·7-s + (0.921 + 0.387i)8-s + (0.354 + 0.272i)10-s − 1.27·11-s − 0.364·13-s + (0.299 + 0.230i)14-s + (−0.869 + 0.493i)16-s + 0.914i·17-s − 1.06i·19-s + (−0.432 + 0.114i)20-s + (0.779 − 1.01i)22-s − 0.226·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.936 - 0.349i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.936 - 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1260\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-0.936 - 0.349i$
Analytic conductor: \(10.0611\)
Root analytic conductor: \(3.17193\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1260} (71, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1260,\ (\ :1/2),\ -0.936 - 0.349i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3558438763\)
\(L(\frac12)\) \(\approx\) \(0.3558438763\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.862 - 1.12i)T \)
3 \( 1 \)
5 \( 1 + iT \)
7 \( 1 + iT \)
good11 \( 1 + 4.23T + 11T^{2} \)
13 \( 1 + 1.31T + 13T^{2} \)
17 \( 1 - 3.77iT - 17T^{2} \)
19 \( 1 + 4.64iT - 19T^{2} \)
23 \( 1 + 1.08T + 23T^{2} \)
29 \( 1 - 7.76iT - 29T^{2} \)
31 \( 1 + 2.35iT - 31T^{2} \)
37 \( 1 - 2.46T + 37T^{2} \)
41 \( 1 - 11.6iT - 41T^{2} \)
43 \( 1 - 11.9iT - 43T^{2} \)
47 \( 1 - 1.69T + 47T^{2} \)
53 \( 1 - 2.07iT - 53T^{2} \)
59 \( 1 + 1.79T + 59T^{2} \)
61 \( 1 + 11.7T + 61T^{2} \)
67 \( 1 + 5.42iT - 67T^{2} \)
71 \( 1 + 3.12T + 71T^{2} \)
73 \( 1 + 1.47T + 73T^{2} \)
79 \( 1 - 14.4iT - 79T^{2} \)
83 \( 1 + 3.23T + 83T^{2} \)
89 \( 1 - 18.6iT - 89T^{2} \)
97 \( 1 - 7.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.848536866456495747297028213543, −9.209998347486665444791764494999, −8.207522543443638760772911506332, −7.79611024292102738338960457450, −6.86217930905656882872742357663, −5.98199477417488563758829845872, −5.04916730452214876303323775625, −4.42065543671817569039960719906, −2.78550685808957542080429613671, −1.33197173678506128980554890423, 0.18751300139326181546195649778, 2.05789792113939225087457814365, 2.78037891482430817977748116022, 3.82709372188924712607109064541, 4.97580607705716239693614577366, 5.93823148361355993162894928522, 7.27441955528997643726948227556, 7.72787297860494262016978964523, 8.627882666793119934299039011836, 9.453103212378992214135297847895

Graph of the $Z$-function along the critical line