L(s) = 1 | + 2·5-s − 4·9-s − 4·13-s + 12·17-s + 3·25-s − 8·29-s + 4·37-s + 16·41-s − 8·45-s + 4·49-s − 4·53-s − 28·61-s − 8·65-s + 12·73-s + 7·81-s + 24·85-s + 12·89-s + 20·97-s + 12·109-s − 20·113-s + 16·117-s + 10·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 4/3·9-s − 1.10·13-s + 2.91·17-s + 3/5·25-s − 1.48·29-s + 0.657·37-s + 2.49·41-s − 1.19·45-s + 4/7·49-s − 0.549·53-s − 3.58·61-s − 0.992·65-s + 1.40·73-s + 7/9·81-s + 2.60·85-s + 1.27·89-s + 2.03·97-s + 1.14·109-s − 1.88·113-s + 1.47·117-s + 0.909·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1638400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
104.465 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.206934032 |
L(21) |
≈ |
2.206934032 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−T)2 |
good | 3 | C22 | 1+4T2+p2T4 |
| 7 | C22 | 1−4T2+p2T4 |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C22 | 1+30T2+p2T4 |
| 23 | C22 | 1−4T2+p2T4 |
| 29 | C2 | (1+4T+pT2)2 |
| 31 | C22 | 1+54T2+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1−8T+pT2)2 |
| 43 | C22 | 1+84T2+p2T4 |
| 47 | C22 | 1+92T2+p2T4 |
| 53 | C2 | (1+2T+pT2)2 |
| 59 | C22 | 1+110T2+p2T4 |
| 61 | C2 | (1+14T+pT2)2 |
| 67 | C22 | 1+116T2+p2T4 |
| 71 | C22 | 1+134T2+p2T4 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C22 | 1−130T2+p2T4 |
| 83 | C22 | 1+4T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.761164842599230452270933274350, −9.417813960759149650388470402767, −9.146917843984336564199460927881, −8.934543866025143240598883397938, −7.965800338953623128029847401656, −7.84804635143844064735293788203, −7.60923321559064389382275585544, −7.16521819535438178940961557869, −6.26415304508219311984899254644, −6.11974118255946195368307126920, −5.58415167840856839644784371779, −5.49936600934448183561518176378, −4.90639145286840195823956743878, −4.40058944195331033734735040382, −3.58082100235383699110499102578, −3.20684118995595838914477826137, −2.72144630647887323038483034788, −2.22259305792153845108702480225, −1.45358908317161389346517381853, −0.64110331270867126694107758633,
0.64110331270867126694107758633, 1.45358908317161389346517381853, 2.22259305792153845108702480225, 2.72144630647887323038483034788, 3.20684118995595838914477826137, 3.58082100235383699110499102578, 4.40058944195331033734735040382, 4.90639145286840195823956743878, 5.49936600934448183561518176378, 5.58415167840856839644784371779, 6.11974118255946195368307126920, 6.26415304508219311984899254644, 7.16521819535438178940961557869, 7.60923321559064389382275585544, 7.84804635143844064735293788203, 7.965800338953623128029847401656, 8.934543866025143240598883397938, 9.146917843984336564199460927881, 9.417813960759149650388470402767, 9.761164842599230452270933274350