L(s) = 1 | + 4·7-s + 2·9-s + 4·17-s + 12·23-s − 25-s + 8·31-s + 20·41-s − 4·47-s − 2·49-s + 8·63-s + 24·71-s − 20·73-s − 16·79-s − 5·81-s + 12·89-s + 20·97-s − 4·103-s − 12·113-s + 16·119-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 8·153-s + ⋯ |
L(s) = 1 | + 1.51·7-s + 2/3·9-s + 0.970·17-s + 2.50·23-s − 1/5·25-s + 1.43·31-s + 3.12·41-s − 0.583·47-s − 2/7·49-s + 1.00·63-s + 2.84·71-s − 2.34·73-s − 1.80·79-s − 5/9·81-s + 1.27·89-s + 2.03·97-s − 0.394·103-s − 1.12·113-s + 1.46·119-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.646·153-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1638400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
104.465 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.715136929 |
L(21) |
≈ |
3.715136929 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+T2 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C2 | (1−2T+pT2)2 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C22 | 1+26T2+p2T4 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C22 | 1−54T2+p2T4 |
| 31 | C2 | (1−4T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C22 | 1−82T2+p2T4 |
| 47 | C2 | (1+2T+pT2)2 |
| 53 | C22 | 1−102T2+p2T4 |
| 59 | C2 | (1−pT2)2 |
| 61 | C22 | 1−118T2+p2T4 |
| 67 | C22 | 1−98T2+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−66T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.776200963334991338265089865452, −9.548542620219817254205937044250, −9.046866256524912021517874461995, −8.513715621080274122741456904179, −8.378850205366672997921174603243, −7.68613461182798119360937015743, −7.42789027444500383537495659354, −7.33199107908077772433713637004, −6.41557191448445407871384308461, −6.31521360589688984426753952956, −5.54024007330661594377694783736, −5.17736275527103570162766340915, −4.71579075765337062072571809757, −4.48420504069430678262865452901, −3.89817626275689786006102587650, −3.17743772980011364424921909151, −2.74380996083893799449863223262, −2.07445675364317249813953668184, −1.14278176642425696447911837790, −1.08571203973696756141475815507,
1.08571203973696756141475815507, 1.14278176642425696447911837790, 2.07445675364317249813953668184, 2.74380996083893799449863223262, 3.17743772980011364424921909151, 3.89817626275689786006102587650, 4.48420504069430678262865452901, 4.71579075765337062072571809757, 5.17736275527103570162766340915, 5.54024007330661594377694783736, 6.31521360589688984426753952956, 6.41557191448445407871384308461, 7.33199107908077772433713637004, 7.42789027444500383537495659354, 7.68613461182798119360937015743, 8.378850205366672997921174603243, 8.513715621080274122741456904179, 9.046866256524912021517874461995, 9.548542620219817254205937044250, 9.776200963334991338265089865452