Properties

Label 2-1280-40.29-c1-0-6
Degree $2$
Conductor $1280$
Sign $-0.515 - 0.856i$
Analytic cond. $10.2208$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.70·3-s + (−0.539 + 2.17i)5-s − 2.63i·7-s − 0.0783·9-s + 5.41i·11-s − 6.34·13-s + (−0.921 + 3.70i)15-s + 3.41i·17-s + 3.26i·19-s − 4.49i·21-s + 1.36i·23-s + (−4.41 − 2.34i)25-s − 5.26·27-s + 2i·29-s − 4.68·31-s + ⋯
L(s)  = 1  + 0.986·3-s + (−0.241 + 0.970i)5-s − 0.994i·7-s − 0.0261·9-s + 1.63i·11-s − 1.75·13-s + (−0.237 + 0.957i)15-s + 0.829i·17-s + 0.748i·19-s − 0.981i·21-s + 0.285i·23-s + (−0.883 − 0.468i)25-s − 1.01·27-s + 0.371i·29-s − 0.840·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.515 - 0.856i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.515 - 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1280\)    =    \(2^{8} \cdot 5\)
Sign: $-0.515 - 0.856i$
Analytic conductor: \(10.2208\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1280} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1280,\ (\ :1/2),\ -0.515 - 0.856i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.352591363\)
\(L(\frac12)\) \(\approx\) \(1.352591363\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.539 - 2.17i)T \)
good3 \( 1 - 1.70T + 3T^{2} \)
7 \( 1 + 2.63iT - 7T^{2} \)
11 \( 1 - 5.41iT - 11T^{2} \)
13 \( 1 + 6.34T + 13T^{2} \)
17 \( 1 - 3.41iT - 17T^{2} \)
19 \( 1 - 3.26iT - 19T^{2} \)
23 \( 1 - 1.36iT - 23T^{2} \)
29 \( 1 - 2iT - 29T^{2} \)
31 \( 1 + 4.68T + 31T^{2} \)
37 \( 1 - 5.75T + 37T^{2} \)
41 \( 1 - 7.75T + 41T^{2} \)
43 \( 1 - 4.44T + 43T^{2} \)
47 \( 1 - 4.78iT - 47T^{2} \)
53 \( 1 - 1.65T + 53T^{2} \)
59 \( 1 - 3.26iT - 59T^{2} \)
61 \( 1 - 2.49iT - 61T^{2} \)
67 \( 1 - 7.86T + 67T^{2} \)
71 \( 1 - 6.15T + 71T^{2} \)
73 \( 1 + 13.5iT - 73T^{2} \)
79 \( 1 + 12.6T + 79T^{2} \)
83 \( 1 + 14.9T + 83T^{2} \)
89 \( 1 + 8.52T + 89T^{2} \)
97 \( 1 + 4.58iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.890015363650159060499460817932, −9.352621650423584344939965201940, −8.049646905229552278262828247840, −7.35220680178105519110396257887, −7.20611676137382239056844687602, −5.86781359026046147898049134561, −4.49520285817842848799570127262, −3.84928507030962824134825197254, −2.74417669207143747667385092954, −1.95454611415069399336704424213, 0.45898161306143610099975672638, 2.36669993210522031120577544069, 2.90260846034973317998639208661, 4.15742727427055257248847047664, 5.25607739062761704418742915441, 5.77665885739156199210369026857, 7.20530313822267613727686314847, 8.031080447586486175186612647438, 8.665364437768847111870982766317, 9.211460762088490026808877735936

Graph of the $Z$-function along the critical line