L(s) = 1 | + 1.70·3-s + (−0.539 + 2.17i)5-s − 2.63i·7-s − 0.0783·9-s + 5.41i·11-s − 6.34·13-s + (−0.921 + 3.70i)15-s + 3.41i·17-s + 3.26i·19-s − 4.49i·21-s + 1.36i·23-s + (−4.41 − 2.34i)25-s − 5.26·27-s + 2i·29-s − 4.68·31-s + ⋯ |
L(s) = 1 | + 0.986·3-s + (−0.241 + 0.970i)5-s − 0.994i·7-s − 0.0261·9-s + 1.63i·11-s − 1.75·13-s + (−0.237 + 0.957i)15-s + 0.829i·17-s + 0.748i·19-s − 0.981i·21-s + 0.285i·23-s + (−0.883 − 0.468i)25-s − 1.01·27-s + 0.371i·29-s − 0.840·31-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)(−0.515−0.856i)Λ(2−s)
Λ(s)=(=(1280s/2ΓC(s+1/2)L(s)(−0.515−0.856i)Λ(1−s)
Degree: |
2 |
Conductor: |
1280
= 28⋅5
|
Sign: |
−0.515−0.856i
|
Analytic conductor: |
10.2208 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1280(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1280, ( :1/2), −0.515−0.856i)
|
Particular Values
L(1) |
≈ |
1.352591363 |
L(21) |
≈ |
1.352591363 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.539−2.17i)T |
good | 3 | 1−1.70T+3T2 |
| 7 | 1+2.63iT−7T2 |
| 11 | 1−5.41iT−11T2 |
| 13 | 1+6.34T+13T2 |
| 17 | 1−3.41iT−17T2 |
| 19 | 1−3.26iT−19T2 |
| 23 | 1−1.36iT−23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+4.68T+31T2 |
| 37 | 1−5.75T+37T2 |
| 41 | 1−7.75T+41T2 |
| 43 | 1−4.44T+43T2 |
| 47 | 1−4.78iT−47T2 |
| 53 | 1−1.65T+53T2 |
| 59 | 1−3.26iT−59T2 |
| 61 | 1−2.49iT−61T2 |
| 67 | 1−7.86T+67T2 |
| 71 | 1−6.15T+71T2 |
| 73 | 1+13.5iT−73T2 |
| 79 | 1+12.6T+79T2 |
| 83 | 1+14.9T+83T2 |
| 89 | 1+8.52T+89T2 |
| 97 | 1+4.58iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.890015363650159060499460817932, −9.352621650423584344939965201940, −8.049646905229552278262828247840, −7.35220680178105519110396257887, −7.20611676137382239056844687602, −5.86781359026046147898049134561, −4.49520285817842848799570127262, −3.84928507030962824134825197254, −2.74417669207143747667385092954, −1.95454611415069399336704424213,
0.45898161306143610099975672638, 2.36669993210522031120577544069, 2.90260846034973317998639208661, 4.15742727427055257248847047664, 5.25607739062761704418742915441, 5.77665885739156199210369026857, 7.20530313822267613727686314847, 8.031080447586486175186612647438, 8.665364437768847111870982766317, 9.211460762088490026808877735936