L(s) = 1 | + 1.70·3-s + (0.539 − 2.17i)5-s + 2.63i·7-s − 0.0783·9-s + 5.41i·11-s + 6.34·13-s + (0.921 − 3.70i)15-s + 3.41i·17-s + 3.26i·19-s + 4.49i·21-s − 1.36i·23-s + (−4.41 − 2.34i)25-s − 5.26·27-s − 2i·29-s + 4.68·31-s + ⋯ |
L(s) = 1 | + 0.986·3-s + (0.241 − 0.970i)5-s + 0.994i·7-s − 0.0261·9-s + 1.63i·11-s + 1.75·13-s + (0.237 − 0.957i)15-s + 0.829i·17-s + 0.748i·19-s + 0.981i·21-s − 0.285i·23-s + (−0.883 − 0.468i)25-s − 1.01·27-s − 0.371i·29-s + 0.840·31-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)(0.856−0.515i)Λ(2−s)
Λ(s)=(=(1280s/2ΓC(s+1/2)L(s)(0.856−0.515i)Λ(1−s)
Degree: |
2 |
Conductor: |
1280
= 28⋅5
|
Sign: |
0.856−0.515i
|
Analytic conductor: |
10.2208 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1280(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1280, ( :1/2), 0.856−0.515i)
|
Particular Values
L(1) |
≈ |
2.448805061 |
L(21) |
≈ |
2.448805061 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.539+2.17i)T |
good | 3 | 1−1.70T+3T2 |
| 7 | 1−2.63iT−7T2 |
| 11 | 1−5.41iT−11T2 |
| 13 | 1−6.34T+13T2 |
| 17 | 1−3.41iT−17T2 |
| 19 | 1−3.26iT−19T2 |
| 23 | 1+1.36iT−23T2 |
| 29 | 1+2iT−29T2 |
| 31 | 1−4.68T+31T2 |
| 37 | 1+5.75T+37T2 |
| 41 | 1−7.75T+41T2 |
| 43 | 1−4.44T+43T2 |
| 47 | 1+4.78iT−47T2 |
| 53 | 1+1.65T+53T2 |
| 59 | 1−3.26iT−59T2 |
| 61 | 1+2.49iT−61T2 |
| 67 | 1−7.86T+67T2 |
| 71 | 1+6.15T+71T2 |
| 73 | 1+13.5iT−73T2 |
| 79 | 1−12.6T+79T2 |
| 83 | 1+14.9T+83T2 |
| 89 | 1+8.52T+89T2 |
| 97 | 1+4.58iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.516768034929246182854735691707, −8.728906890519987449682233534604, −8.454757129114537129131160554262, −7.60590078738788651941234883667, −6.23300564415862171317710722028, −5.64179141399862291234752299759, −4.47388609697318311892120893156, −3.65647529477294157265530110032, −2.33184866609757018041268796582, −1.57525610902437685051853742601,
0.998787871345519049870340245082, 2.66505672829299754297055220035, 3.33981540516744409999881298230, 3.99017679348804031028670187841, 5.60532697126220148590796704965, 6.36271506798405530350788427430, 7.21278864765205398535370438048, 8.073152264212579658932248489576, 8.742080818906847600076459821911, 9.448981773807819261551257181556