L(s) = 1 | + (0.341 + 0.341i)3-s + (−0.707 + 0.707i)5-s − 1.89i·7-s − 2.76i·9-s + (−3.24 + 3.24i)11-s + (2.93 + 2.93i)13-s − 0.482·15-s − 8.00·17-s + (−3.98 − 3.98i)19-s + (0.646 − 0.646i)21-s + 5.61i·23-s − 1.00i·25-s + (1.96 − 1.96i)27-s + (1.39 + 1.39i)29-s − 6.29·31-s + ⋯ |
L(s) = 1 | + (0.196 + 0.196i)3-s + (−0.316 + 0.316i)5-s − 0.716i·7-s − 0.922i·9-s + (−0.979 + 0.979i)11-s + (0.813 + 0.813i)13-s − 0.124·15-s − 1.94·17-s + (−0.913 − 0.913i)19-s + (0.141 − 0.141i)21-s + 1.17i·23-s − 0.200i·25-s + (0.378 − 0.378i)27-s + (0.259 + 0.259i)29-s − 1.13·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1929117880\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1929117880\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-0.341 - 0.341i)T + 3iT^{2} \) |
| 7 | \( 1 + 1.89iT - 7T^{2} \) |
| 11 | \( 1 + (3.24 - 3.24i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.93 - 2.93i)T + 13iT^{2} \) |
| 17 | \( 1 + 8.00T + 17T^{2} \) |
| 19 | \( 1 + (3.98 + 3.98i)T + 19iT^{2} \) |
| 23 | \( 1 - 5.61iT - 23T^{2} \) |
| 29 | \( 1 + (-1.39 - 1.39i)T + 29iT^{2} \) |
| 31 | \( 1 + 6.29T + 31T^{2} \) |
| 37 | \( 1 + (-1.69 + 1.69i)T - 37iT^{2} \) |
| 41 | \( 1 - 3.16iT - 41T^{2} \) |
| 43 | \( 1 + (3.40 - 3.40i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.99T + 47T^{2} \) |
| 53 | \( 1 + (1.42 - 1.42i)T - 53iT^{2} \) |
| 59 | \( 1 + (9.70 - 9.70i)T - 59iT^{2} \) |
| 61 | \( 1 + (-7.04 - 7.04i)T + 61iT^{2} \) |
| 67 | \( 1 + (5.84 + 5.84i)T + 67iT^{2} \) |
| 71 | \( 1 + 4.49iT - 71T^{2} \) |
| 73 | \( 1 + 9.77iT - 73T^{2} \) |
| 79 | \( 1 + 13.0T + 79T^{2} \) |
| 83 | \( 1 + (4.23 + 4.23i)T + 83iT^{2} \) |
| 89 | \( 1 + 5.24iT - 89T^{2} \) |
| 97 | \( 1 + 5.34T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04232355230223799074570718682, −9.165936146826413452533047876013, −8.629259696691968805205061814055, −7.40619520698798925499959626053, −6.90840300588734376038896126560, −6.10813942816613079008549140765, −4.59769254812702438496649172265, −4.18243056757446884060216094216, −3.05433634219673143324026343528, −1.82273777106430022655688428824,
0.07236869434030685239852121257, 1.98767839830609167571485740588, 2.84869247149702527986582702048, 4.08962808344510628722144750709, 5.11872271564072469991511428653, 5.86173678002898125956600330178, 6.76223187757241494559586247373, 8.069089695805844182829145514579, 8.357305118413947102476965817114, 8.908879434622236729851610969122