L(s) = 1 | + (1.73 + 1.73i)3-s + (−2 − i)5-s + (−1.73 − 1.73i)7-s + 2.99i·9-s + 3.46·11-s + (1 − i)13-s + (−1.73 − 5.19i)15-s + (1 − i)17-s − 6.92i·19-s − 5.99i·21-s + (1.73 − 1.73i)23-s + (3 + 4i)25-s + 4·29-s + 3.46i·31-s + (5.99 + 5.99i)33-s + ⋯ |
L(s) = 1 | + (0.999 + 0.999i)3-s + (−0.894 − 0.447i)5-s + (−0.654 − 0.654i)7-s + 0.999i·9-s + 1.04·11-s + (0.277 − 0.277i)13-s + (−0.447 − 1.34i)15-s + (0.242 − 0.242i)17-s − 1.58i·19-s − 1.30i·21-s + (0.361 − 0.361i)23-s + (0.600 + 0.800i)25-s + 0.742·29-s + 0.622i·31-s + (1.04 + 1.04i)33-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)(0.973+0.229i)Λ(2−s)
Λ(s)=(=(1280s/2ΓC(s+1/2)L(s)(0.973+0.229i)Λ(1−s)
Degree: |
2 |
Conductor: |
1280
= 28⋅5
|
Sign: |
0.973+0.229i
|
Analytic conductor: |
10.2208 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1280(383,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1280, ( :1/2), 0.973+0.229i)
|
Particular Values
L(1) |
≈ |
1.928330323 |
L(21) |
≈ |
1.928330323 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2+i)T |
good | 3 | 1+(−1.73−1.73i)T+3iT2 |
| 7 | 1+(1.73+1.73i)T+7iT2 |
| 11 | 1−3.46T+11T2 |
| 13 | 1+(−1+i)T−13iT2 |
| 17 | 1+(−1+i)T−17iT2 |
| 19 | 1+6.92iT−19T2 |
| 23 | 1+(−1.73+1.73i)T−23iT2 |
| 29 | 1−4T+29T2 |
| 31 | 1−3.46iT−31T2 |
| 37 | 1+(−5−5i)T+37iT2 |
| 41 | 1+2T+41T2 |
| 43 | 1+(1.73+1.73i)T+43iT2 |
| 47 | 1+(−1.73−1.73i)T+47iT2 |
| 53 | 1+(−7+7i)T−53iT2 |
| 59 | 1+6.92iT−59T2 |
| 61 | 1+6iT−61T2 |
| 67 | 1+(5.19−5.19i)T−67iT2 |
| 71 | 1−10.3iT−71T2 |
| 73 | 1+(−7−7i)T+73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(12.1+12.1i)T+83iT2 |
| 89 | 1+8iT−89T2 |
| 97 | 1+(7−7i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.575770751682785259304893170341, −8.765852303542415923673902903029, −8.397267650988539927376904809920, −7.20924957123185824353214197929, −6.58325554751861152459748669912, −4.99218500360125379989454933050, −4.29358123229920425813289483807, −3.55991014931965785906009800304, −2.86512113557611190551058533997, −0.830057158570300643312637949553,
1.31482852011629183228314243358, 2.53742082632452432688807137161, 3.42233251412544790252163464322, 4.15252359049748957888910733822, 5.87858510084929993875931566238, 6.54924465860822829057565795998, 7.37991733968859590875168139616, 8.022924475940615697521075816568, 8.758256800088369239371849489072, 9.413022989873941316093826761235