Properties

Label 4-130e2-1.1-c1e2-0-9
Degree $4$
Conductor $16900$
Sign $1$
Analytic cond. $1.07755$
Root an. cond. $1.01884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 4-s + 6·9-s − 4·12-s + 4·13-s + 16-s − 12·17-s − 25-s − 4·27-s + 12·29-s − 6·36-s + 16·39-s − 20·43-s + 4·48-s + 14·49-s − 48·51-s − 4·52-s + 20·61-s − 64-s + 12·68-s − 4·75-s − 16·79-s − 37·81-s + 48·87-s + 100-s + 12·101-s − 8·103-s + ⋯
L(s)  = 1  + 2.30·3-s − 1/2·4-s + 2·9-s − 1.15·12-s + 1.10·13-s + 1/4·16-s − 2.91·17-s − 1/5·25-s − 0.769·27-s + 2.22·29-s − 36-s + 2.56·39-s − 3.04·43-s + 0.577·48-s + 2·49-s − 6.72·51-s − 0.554·52-s + 2.56·61-s − 1/8·64-s + 1.45·68-s − 0.461·75-s − 1.80·79-s − 4.11·81-s + 5.14·87-s + 1/10·100-s + 1.19·101-s − 0.788·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16900\)    =    \(2^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1.07755\)
Root analytic conductor: \(1.01884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 16900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.881863092\)
\(L(\frac12)\) \(\approx\) \(1.881863092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + T^{2} \)
13$C_2$ \( 1 - 4 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64307047223434482753417733184, −13.43987587270077914606363645205, −12.97672677219211980506742795396, −12.15278791750272641970502876374, −11.34035261918977020073503627788, −11.16198642625201982590408812968, −10.12234744829263090851293025623, −9.892917837024798160963779878530, −8.925613416825172513155250554034, −8.798807137075199390827783279547, −8.406467371345004101137487683045, −8.225449997921241172760293684223, −7.12850970394112456487857799337, −6.69135004082542710953257671703, −5.87667466683688625617498021739, −4.77795400527083453366709640303, −4.12831713785439225613911682394, −3.49913214415705381439925680590, −2.70495821028726688122985006903, −2.02481506755937410809719002151, 2.02481506755937410809719002151, 2.70495821028726688122985006903, 3.49913214415705381439925680590, 4.12831713785439225613911682394, 4.77795400527083453366709640303, 5.87667466683688625617498021739, 6.69135004082542710953257671703, 7.12850970394112456487857799337, 8.225449997921241172760293684223, 8.406467371345004101137487683045, 8.798807137075199390827783279547, 8.925613416825172513155250554034, 9.892917837024798160963779878530, 10.12234744829263090851293025623, 11.16198642625201982590408812968, 11.34035261918977020073503627788, 12.15278791750272641970502876374, 12.97672677219211980506742795396, 13.43987587270077914606363645205, 13.64307047223434482753417733184

Graph of the $Z$-function along the critical line