L(s) = 1 | + 4·3-s − 4-s + 6·9-s − 4·12-s + 4·13-s + 16-s − 12·17-s − 25-s − 4·27-s + 12·29-s − 6·36-s + 16·39-s − 20·43-s + 4·48-s + 14·49-s − 48·51-s − 4·52-s + 20·61-s − 64-s + 12·68-s − 4·75-s − 16·79-s − 37·81-s + 48·87-s + 100-s + 12·101-s − 8·103-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 1/2·4-s + 2·9-s − 1.15·12-s + 1.10·13-s + 1/4·16-s − 2.91·17-s − 1/5·25-s − 0.769·27-s + 2.22·29-s − 36-s + 2.56·39-s − 3.04·43-s + 0.577·48-s + 2·49-s − 6.72·51-s − 0.554·52-s + 2.56·61-s − 1/8·64-s + 1.45·68-s − 0.461·75-s − 1.80·79-s − 4.11·81-s + 5.14·87-s + 1/10·100-s + 1.19·101-s − 0.788·103-s + ⋯ |
Λ(s)=(=(16900s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(16900s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
16900
= 22⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
1.07755 |
Root analytic conductor: |
1.01884 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 16900, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.881863092 |
L(21) |
≈ |
1.881863092 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 5 | C2 | 1+T2 |
| 13 | C2 | 1−4T+pT2 |
good | 3 | C2 | (1−2T+pT2)2 |
| 7 | C2 | (1−pT2)2 |
| 11 | C2 | (1−pT2)2 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1−pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C22 | 1−26T2+p2T4 |
| 37 | C22 | 1−38T2+p2T4 |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1+10T+pT2)2 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C2 | (1+pT2)2 |
| 59 | C22 | 1+26T2+p2T4 |
| 61 | C2 | (1−10T+pT2)2 |
| 67 | C22 | 1+10T2+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C22 | 1−34T2+p2T4 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.64307047223434482753417733184, −13.43987587270077914606363645205, −12.97672677219211980506742795396, −12.15278791750272641970502876374, −11.34035261918977020073503627788, −11.16198642625201982590408812968, −10.12234744829263090851293025623, −9.892917837024798160963779878530, −8.925613416825172513155250554034, −8.798807137075199390827783279547, −8.406467371345004101137487683045, −8.225449997921241172760293684223, −7.12850970394112456487857799337, −6.69135004082542710953257671703, −5.87667466683688625617498021739, −4.77795400527083453366709640303, −4.12831713785439225613911682394, −3.49913214415705381439925680590, −2.70495821028726688122985006903, −2.02481506755937410809719002151,
2.02481506755937410809719002151, 2.70495821028726688122985006903, 3.49913214415705381439925680590, 4.12831713785439225613911682394, 4.77795400527083453366709640303, 5.87667466683688625617498021739, 6.69135004082542710953257671703, 7.12850970394112456487857799337, 8.225449997921241172760293684223, 8.406467371345004101137487683045, 8.798807137075199390827783279547, 8.925613416825172513155250554034, 9.892917837024798160963779878530, 10.12234744829263090851293025623, 11.16198642625201982590408812968, 11.34035261918977020073503627788, 12.15278791750272641970502876374, 12.97672677219211980506742795396, 13.43987587270077914606363645205, 13.64307047223434482753417733184