Properties

Label 2-130-1.1-c5-0-8
Degree $2$
Conductor $130$
Sign $1$
Analytic cond. $20.8498$
Root an. cond. $4.56616$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 13.8·3-s + 16·4-s + 25·5-s − 55.2·6-s + 213.·7-s − 64·8-s − 52.2·9-s − 100·10-s + 587.·11-s + 220.·12-s − 169·13-s − 852.·14-s + 345.·15-s + 256·16-s + 162.·17-s + 208.·18-s − 81.3·19-s + 400·20-s + 2.94e3·21-s − 2.34e3·22-s − 2.94e3·23-s − 883.·24-s + 625·25-s + 676·26-s − 4.07e3·27-s + 3.41e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.886·3-s + 0.5·4-s + 0.447·5-s − 0.626·6-s + 1.64·7-s − 0.353·8-s − 0.215·9-s − 0.316·10-s + 1.46·11-s + 0.443·12-s − 0.277·13-s − 1.16·14-s + 0.396·15-s + 0.250·16-s + 0.136·17-s + 0.152·18-s − 0.0517·19-s + 0.223·20-s + 1.45·21-s − 1.03·22-s − 1.16·23-s − 0.313·24-s + 0.200·25-s + 0.196·26-s − 1.07·27-s + 0.822·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130\)    =    \(2 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(20.8498\)
Root analytic conductor: \(4.56616\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 130,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.462464481\)
\(L(\frac12)\) \(\approx\) \(2.462464481\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
5 \( 1 - 25T \)
13 \( 1 + 169T \)
good3 \( 1 - 13.8T + 243T^{2} \)
7 \( 1 - 213.T + 1.68e4T^{2} \)
11 \( 1 - 587.T + 1.61e5T^{2} \)
17 \( 1 - 162.T + 1.41e6T^{2} \)
19 \( 1 + 81.3T + 2.47e6T^{2} \)
23 \( 1 + 2.94e3T + 6.43e6T^{2} \)
29 \( 1 - 6.25e3T + 2.05e7T^{2} \)
31 \( 1 + 4.03e3T + 2.86e7T^{2} \)
37 \( 1 - 7.61e3T + 6.93e7T^{2} \)
41 \( 1 - 958.T + 1.15e8T^{2} \)
43 \( 1 - 169.T + 1.47e8T^{2} \)
47 \( 1 - 2.16e4T + 2.29e8T^{2} \)
53 \( 1 - 2.47e4T + 4.18e8T^{2} \)
59 \( 1 - 4.01e4T + 7.14e8T^{2} \)
61 \( 1 + 1.63e4T + 8.44e8T^{2} \)
67 \( 1 - 1.83e4T + 1.35e9T^{2} \)
71 \( 1 + 7.78e4T + 1.80e9T^{2} \)
73 \( 1 + 6.21e4T + 2.07e9T^{2} \)
79 \( 1 + 6.05e4T + 3.07e9T^{2} \)
83 \( 1 + 2.65e3T + 3.93e9T^{2} \)
89 \( 1 - 8.22e3T + 5.58e9T^{2} \)
97 \( 1 + 5.38e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.05854405541417134351038072232, −11.35304759743360430550470607132, −10.10427462753226056803604770707, −8.968595665529428824116130327796, −8.374126730362824721633275509994, −7.32582695781379449497196645572, −5.82193448033316566986646754901, −4.17040536299388433722684199965, −2.38888123678575678618212379598, −1.30744983143822888102858372711, 1.30744983143822888102858372711, 2.38888123678575678618212379598, 4.17040536299388433722684199965, 5.82193448033316566986646754901, 7.32582695781379449497196645572, 8.374126730362824721633275509994, 8.968595665529428824116130327796, 10.10427462753226056803604770707, 11.35304759743360430550470607132, 12.05854405541417134351038072232

Graph of the $Z$-function along the critical line