L(s) = 1 | − 4·2-s + 13.8·3-s + 16·4-s + 25·5-s − 55.2·6-s + 213.·7-s − 64·8-s − 52.2·9-s − 100·10-s + 587.·11-s + 220.·12-s − 169·13-s − 852.·14-s + 345.·15-s + 256·16-s + 162.·17-s + 208.·18-s − 81.3·19-s + 400·20-s + 2.94e3·21-s − 2.34e3·22-s − 2.94e3·23-s − 883.·24-s + 625·25-s + 676·26-s − 4.07e3·27-s + 3.41e3·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.886·3-s + 0.5·4-s + 0.447·5-s − 0.626·6-s + 1.64·7-s − 0.353·8-s − 0.215·9-s − 0.316·10-s + 1.46·11-s + 0.443·12-s − 0.277·13-s − 1.16·14-s + 0.396·15-s + 0.250·16-s + 0.136·17-s + 0.152·18-s − 0.0517·19-s + 0.223·20-s + 1.45·21-s − 1.03·22-s − 1.16·23-s − 0.313·24-s + 0.200·25-s + 0.196·26-s − 1.07·27-s + 0.822·28-s + ⋯ |
Λ(s)=(=(130s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(130s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.462464481 |
L(21) |
≈ |
2.462464481 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4T |
| 5 | 1−25T |
| 13 | 1+169T |
good | 3 | 1−13.8T+243T2 |
| 7 | 1−213.T+1.68e4T2 |
| 11 | 1−587.T+1.61e5T2 |
| 17 | 1−162.T+1.41e6T2 |
| 19 | 1+81.3T+2.47e6T2 |
| 23 | 1+2.94e3T+6.43e6T2 |
| 29 | 1−6.25e3T+2.05e7T2 |
| 31 | 1+4.03e3T+2.86e7T2 |
| 37 | 1−7.61e3T+6.93e7T2 |
| 41 | 1−958.T+1.15e8T2 |
| 43 | 1−169.T+1.47e8T2 |
| 47 | 1−2.16e4T+2.29e8T2 |
| 53 | 1−2.47e4T+4.18e8T2 |
| 59 | 1−4.01e4T+7.14e8T2 |
| 61 | 1+1.63e4T+8.44e8T2 |
| 67 | 1−1.83e4T+1.35e9T2 |
| 71 | 1+7.78e4T+1.80e9T2 |
| 73 | 1+6.21e4T+2.07e9T2 |
| 79 | 1+6.05e4T+3.07e9T2 |
| 83 | 1+2.65e3T+3.93e9T2 |
| 89 | 1−8.22e3T+5.58e9T2 |
| 97 | 1+5.38e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.05854405541417134351038072232, −11.35304759743360430550470607132, −10.10427462753226056803604770707, −8.968595665529428824116130327796, −8.374126730362824721633275509994, −7.32582695781379449497196645572, −5.82193448033316566986646754901, −4.17040536299388433722684199965, −2.38888123678575678618212379598, −1.30744983143822888102858372711,
1.30744983143822888102858372711, 2.38888123678575678618212379598, 4.17040536299388433722684199965, 5.82193448033316566986646754901, 7.32582695781379449497196645572, 8.374126730362824721633275509994, 8.968595665529428824116130327796, 10.10427462753226056803604770707, 11.35304759743360430550470607132, 12.05854405541417134351038072232