Properties

Label 2-1305-145.144-c1-0-27
Degree $2$
Conductor $1305$
Sign $0.747 - 0.664i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + (1 − 2i)5-s + 2i·7-s − 3·8-s + (1 − 2i)10-s + 2i·11-s + 4i·13-s + 2i·14-s − 16-s + 6·17-s − 2i·19-s + (−1 + 2i)20-s + 2i·22-s + 6i·23-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.5·4-s + (0.447 − 0.894i)5-s + 0.755i·7-s − 1.06·8-s + (0.316 − 0.632i)10-s + 0.603i·11-s + 1.10i·13-s + 0.534i·14-s − 0.250·16-s + 1.45·17-s − 0.458i·19-s + (−0.223 + 0.447i)20-s + 0.426i·22-s + 1.25i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.747 - 0.664i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.747 - 0.664i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $0.747 - 0.664i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ 0.747 - 0.664i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.009973408\)
\(L(\frac12)\) \(\approx\) \(2.009973408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1 + 2i)T \)
29 \( 1 + (-5 - 2i)T \)
good2 \( 1 - T + 2T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 - 6iT - 23T^{2} \)
31 \( 1 - 2iT - 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 12iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 12iT - 61T^{2} \)
67 \( 1 - 6iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 2iT - 79T^{2} \)
83 \( 1 - 2iT - 83T^{2} \)
89 \( 1 + 16iT - 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.402095747839409739074834278817, −9.166898453577486070199159032513, −8.311602364099174959841546770019, −7.22676304236838813091087026639, −6.03944081049483700045557467413, −5.42650341598614599145451380584, −4.74299492762490571545970974386, −3.88548757733506825570768597457, −2.66129910792525779657171666232, −1.32689956029820022363625464688, 0.76393714206530891578627559963, 2.72835092344031485649477893492, 3.43042467485259959085456193143, 4.29625288946228132058118414308, 5.53423337621511941801479793110, 5.92760230442639695388624479270, 6.97665694776657729129051438115, 7.913312280305588642713215425180, 8.646963565966983029106201930584, 9.902337301472496733139408104652

Graph of the $Z$-function along the critical line