L(s) = 1 | + 3.33·2-s + 3.11·4-s − 5·5-s + 1.26·7-s − 16.2·8-s − 16.6·10-s + 35.2·11-s − 44.9·13-s + 4.21·14-s − 79.2·16-s + 17.8·17-s + 113.·19-s − 15.5·20-s + 117.·22-s − 147.·23-s + 25·25-s − 149.·26-s + 3.93·28-s + 29·29-s + 65.4·31-s − 133.·32-s + 59.4·34-s − 6.31·35-s + 399.·37-s + 377.·38-s + 81.4·40-s + 271.·41-s + ⋯ |
L(s) = 1 | + 1.17·2-s + 0.389·4-s − 0.447·5-s + 0.0682·7-s − 0.719·8-s − 0.527·10-s + 0.966·11-s − 0.959·13-s + 0.0804·14-s − 1.23·16-s + 0.254·17-s + 1.36·19-s − 0.174·20-s + 1.13·22-s − 1.33·23-s + 0.200·25-s − 1.13·26-s + 0.0265·28-s + 0.185·29-s + 0.379·31-s − 0.739·32-s + 0.300·34-s − 0.0305·35-s + 1.77·37-s + 1.61·38-s + 0.321·40-s + 1.03·41-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1305s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.192717912 |
L(21) |
≈ |
3.192717912 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+5T |
| 29 | 1−29T |
good | 2 | 1−3.33T+8T2 |
| 7 | 1−1.26T+343T2 |
| 11 | 1−35.2T+1.33e3T2 |
| 13 | 1+44.9T+2.19e3T2 |
| 17 | 1−17.8T+4.91e3T2 |
| 19 | 1−113.T+6.85e3T2 |
| 23 | 1+147.T+1.21e4T2 |
| 31 | 1−65.4T+2.97e4T2 |
| 37 | 1−399.T+5.06e4T2 |
| 41 | 1−271.T+6.89e4T2 |
| 43 | 1+242.T+7.95e4T2 |
| 47 | 1−374.T+1.03e5T2 |
| 53 | 1+580.T+1.48e5T2 |
| 59 | 1−803.T+2.05e5T2 |
| 61 | 1−842.T+2.26e5T2 |
| 67 | 1−266.T+3.00e5T2 |
| 71 | 1−732.T+3.57e5T2 |
| 73 | 1+227.T+3.89e5T2 |
| 79 | 1+680.T+4.93e5T2 |
| 83 | 1−433.T+5.71e5T2 |
| 89 | 1−1.55e3T+7.04e5T2 |
| 97 | 1+1.02e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.495771679912587781012828299385, −8.345640182999610129872150476415, −7.52557176028013931632382343705, −6.59920746594028912312128283215, −5.78543400641913069919005725892, −4.91009078558169633593412049480, −4.14960242673788528294353839877, −3.39861351121221073535096759041, −2.35550989068813499222307949455, −0.75063319581679578147575481685,
0.75063319581679578147575481685, 2.35550989068813499222307949455, 3.39861351121221073535096759041, 4.14960242673788528294353839877, 4.91009078558169633593412049480, 5.78543400641913069919005725892, 6.59920746594028912312128283215, 7.52557176028013931632382343705, 8.345640182999610129872150476415, 9.495771679912587781012828299385