Properties

Label 2-1305-1.1-c3-0-41
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.33·2-s + 3.11·4-s − 5·5-s + 1.26·7-s − 16.2·8-s − 16.6·10-s + 35.2·11-s − 44.9·13-s + 4.21·14-s − 79.2·16-s + 17.8·17-s + 113.·19-s − 15.5·20-s + 117.·22-s − 147.·23-s + 25·25-s − 149.·26-s + 3.93·28-s + 29·29-s + 65.4·31-s − 133.·32-s + 59.4·34-s − 6.31·35-s + 399.·37-s + 377.·38-s + 81.4·40-s + 271.·41-s + ⋯
L(s)  = 1  + 1.17·2-s + 0.389·4-s − 0.447·5-s + 0.0682·7-s − 0.719·8-s − 0.527·10-s + 0.966·11-s − 0.959·13-s + 0.0804·14-s − 1.23·16-s + 0.254·17-s + 1.36·19-s − 0.174·20-s + 1.13·22-s − 1.33·23-s + 0.200·25-s − 1.13·26-s + 0.0265·28-s + 0.185·29-s + 0.379·31-s − 0.739·32-s + 0.300·34-s − 0.0305·35-s + 1.77·37-s + 1.61·38-s + 0.321·40-s + 1.03·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.192717912\)
\(L(\frac12)\) \(\approx\) \(3.192717912\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 3.33T + 8T^{2} \)
7 \( 1 - 1.26T + 343T^{2} \)
11 \( 1 - 35.2T + 1.33e3T^{2} \)
13 \( 1 + 44.9T + 2.19e3T^{2} \)
17 \( 1 - 17.8T + 4.91e3T^{2} \)
19 \( 1 - 113.T + 6.85e3T^{2} \)
23 \( 1 + 147.T + 1.21e4T^{2} \)
31 \( 1 - 65.4T + 2.97e4T^{2} \)
37 \( 1 - 399.T + 5.06e4T^{2} \)
41 \( 1 - 271.T + 6.89e4T^{2} \)
43 \( 1 + 242.T + 7.95e4T^{2} \)
47 \( 1 - 374.T + 1.03e5T^{2} \)
53 \( 1 + 580.T + 1.48e5T^{2} \)
59 \( 1 - 803.T + 2.05e5T^{2} \)
61 \( 1 - 842.T + 2.26e5T^{2} \)
67 \( 1 - 266.T + 3.00e5T^{2} \)
71 \( 1 - 732.T + 3.57e5T^{2} \)
73 \( 1 + 227.T + 3.89e5T^{2} \)
79 \( 1 + 680.T + 4.93e5T^{2} \)
83 \( 1 - 433.T + 5.71e5T^{2} \)
89 \( 1 - 1.55e3T + 7.04e5T^{2} \)
97 \( 1 + 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.495771679912587781012828299385, −8.345640182999610129872150476415, −7.52557176028013931632382343705, −6.59920746594028912312128283215, −5.78543400641913069919005725892, −4.91009078558169633593412049480, −4.14960242673788528294353839877, −3.39861351121221073535096759041, −2.35550989068813499222307949455, −0.75063319581679578147575481685, 0.75063319581679578147575481685, 2.35550989068813499222307949455, 3.39861351121221073535096759041, 4.14960242673788528294353839877, 4.91009078558169633593412049480, 5.78543400641913069919005725892, 6.59920746594028912312128283215, 7.52557176028013931632382343705, 8.345640182999610129872150476415, 9.495771679912587781012828299385

Graph of the $Z$-function along the critical line