L(s) = 1 | − 4·3-s − 6·9-s + 48·13-s − 56·19-s − 4·25-s + 76·27-s + 24·31-s + 120·37-s − 192·39-s − 120·43-s − 20·49-s + 224·57-s − 48·61-s + 136·67-s − 104·73-s + 16·75-s − 192·79-s − 109·81-s − 96·93-s − 360·97-s + 168·103-s + 128·109-s − 480·111-s − 288·117-s − 22·121-s + 127-s + 480·129-s + ⋯ |
L(s) = 1 | − 4/3·3-s − 2/3·9-s + 3.69·13-s − 2.94·19-s − 0.159·25-s + 2.81·27-s + 0.774·31-s + 3.24·37-s − 4.92·39-s − 2.79·43-s − 0.408·49-s + 3.92·57-s − 0.786·61-s + 2.02·67-s − 1.42·73-s + 0.213·75-s − 2.43·79-s − 1.34·81-s − 1.03·93-s − 3.71·97-s + 1.63·103-s + 1.17·109-s − 4.32·111-s − 2.46·117-s − 0.181·121-s + 0.00787·127-s + 3.72·129-s + ⋯ |
Λ(s)=(=((28⋅34⋅114)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((28⋅34⋅114)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅34⋅114
|
Sign: |
1
|
Analytic conductor: |
167.353 |
Root analytic conductor: |
1.89650 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅34⋅114, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.9677816648 |
L(21) |
≈ |
0.9677816648 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+2T+p2T2)2 |
| 11 | C2 | (1+pT2)2 |
good | 5 | D4×C2 | 1+4T2−154T4+4p4T6+p8T8 |
| 7 | C22 | (1+10T2+p4T4)2 |
| 13 | D4 | (1−24T+394T2−24p2T3+p4T4)2 |
| 17 | D4×C2 | 1−548T2+152006T4−548p4T6+p8T8 |
| 19 | D4 | (1+28T+566T2+28p2T3+p4T4)2 |
| 23 | D4×C2 | 1−1180T2+793734T4−1180p4T6+p8T8 |
| 29 | D4×C2 | 1−2948T2+3564710T4−2948p4T6+p8T8 |
| 31 | D4 | (1−12T+1606T2−12p2T3+p4T4)2 |
| 37 | D4 | (1−60T+3286T2−60p2T3+p4T4)2 |
| 41 | D4×C2 | 1−3236T2+7165574T4−3236p4T6+p8T8 |
| 43 | D4 | (1+60T+4246T2+60p2T3+p4T4)2 |
| 47 | D4×C2 | 1−7964T2+25546694T4−7964p4T6+p8T8 |
| 53 | D4×C2 | 1−6524T2+24696806T4−6524p4T6+p8T8 |
| 59 | D4×C2 | 1−1540T2−4368666T4−1540p4T6+p8T8 |
| 61 | D4 | (1+24T+7498T2+24p2T3+p4T4)2 |
| 67 | D4 | (1−68T+4502T2−68p2T3+p4T4)2 |
| 71 | D4×C2 | 1−8732T2+61537286T4−8732p4T6+p8T8 |
| 73 | D4 | (1+52T+2534T2+52p2T3+p4T4)2 |
| 79 | D4 | (1+96T+14698T2+96p2T3+p4T4)2 |
| 83 | D4×C2 | 1+6652T2+94061606T4+6652p4T6+p8T8 |
| 89 | D4×C2 | 1−29732T2+345919238T4−29732p4T6+p8T8 |
| 97 | D4 | (1+180T+25510T2+180p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.577990669632024711119150319558, −9.314897175201610425668146588946, −8.691942293754224939086056408306, −8.515631402310660871799254634134, −8.409367642329261697807057404175, −8.318785141006575132198691118353, −8.166025228394766077126418199134, −7.56246846318674985110626659429, −6.92152331138720457126023628021, −6.62073772941342379783827933792, −6.58746093998387031164345176793, −6.14367602458893349767216016208, −5.95989970095986457000561774967, −5.86172324499724082875395473454, −5.59786928759725336060040295557, −4.89118291830986800707641256653, −4.64035691952586383280035149383, −4.12597517193238478663924325190, −4.11139251941347730670543369472, −3.43004255918660738661113053838, −3.04744421348196799514269874466, −2.60500773002384297956998016340, −1.80845641971328716610752250374, −1.23295726433643618389422352550, −0.46764483837531875041946054064,
0.46764483837531875041946054064, 1.23295726433643618389422352550, 1.80845641971328716610752250374, 2.60500773002384297956998016340, 3.04744421348196799514269874466, 3.43004255918660738661113053838, 4.11139251941347730670543369472, 4.12597517193238478663924325190, 4.64035691952586383280035149383, 4.89118291830986800707641256653, 5.59786928759725336060040295557, 5.86172324499724082875395473454, 5.95989970095986457000561774967, 6.14367602458893349767216016208, 6.58746093998387031164345176793, 6.62073772941342379783827933792, 6.92152331138720457126023628021, 7.56246846318674985110626659429, 8.166025228394766077126418199134, 8.318785141006575132198691118353, 8.409367642329261697807057404175, 8.515631402310660871799254634134, 8.691942293754224939086056408306, 9.314897175201610425668146588946, 9.577990669632024711119150319558