Properties

Label 2-1320-1.1-c1-0-5
Degree $2$
Conductor $1320$
Sign $1$
Analytic cond. $10.5402$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s − 11-s − 15-s + 4·17-s + 4·19-s − 2·21-s + 4·23-s + 25-s + 27-s + 6·29-s − 33-s + 2·35-s + 6·37-s + 10·41-s + 2·43-s − 45-s − 4·47-s − 3·49-s + 4·51-s − 2·53-s + 55-s + 4·57-s + 12·59-s − 6·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 0.258·15-s + 0.970·17-s + 0.917·19-s − 0.436·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 0.174·33-s + 0.338·35-s + 0.986·37-s + 1.56·41-s + 0.304·43-s − 0.149·45-s − 0.583·47-s − 3/7·49-s + 0.560·51-s − 0.274·53-s + 0.134·55-s + 0.529·57-s + 1.56·59-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(10.5402\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.797805057\)
\(L(\frac12)\) \(\approx\) \(1.797805057\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 18 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.641626984537129846362591387392, −8.854514197506430374257929320197, −7.936470180953667064067257559734, −7.36355796853793679007010598732, −6.43485493806038581563599137006, −5.42623329727972043184980842327, −4.38649357117939208592741270275, −3.33042731439276962650014222981, −2.71534072624835604330487811219, −0.989027028478981179665033157492, 0.989027028478981179665033157492, 2.71534072624835604330487811219, 3.33042731439276962650014222981, 4.38649357117939208592741270275, 5.42623329727972043184980842327, 6.43485493806038581563599137006, 7.36355796853793679007010598732, 7.936470180953667064067257559734, 8.854514197506430374257929320197, 9.641626984537129846362591387392

Graph of the $Z$-function along the critical line