L(s) = 1 | + (1.72 − 0.203i)3-s + (0.910 + 2.04i)5-s + 4.06·7-s + (2.91 − 0.698i)9-s + (−3.04 − 1.32i)11-s + 0.487·13-s + (1.98 + 3.32i)15-s − 6.71i·17-s − 1.77i·19-s + (6.99 − 0.826i)21-s + 4.87·23-s + (−3.34 + 3.71i)25-s + (4.87 − 1.79i)27-s − 1.32·29-s + 6.21·31-s + ⋯ |
L(s) = 1 | + (0.993 − 0.117i)3-s + (0.407 + 0.913i)5-s + 1.53·7-s + (0.972 − 0.232i)9-s + (−0.916 − 0.399i)11-s + 0.135·13-s + (0.511 + 0.859i)15-s − 1.62i·17-s − 0.407i·19-s + (1.52 − 0.180i)21-s + 1.01·23-s + (−0.668 + 0.743i)25-s + (0.938 − 0.345i)27-s − 0.246·29-s + 1.11·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.977883957\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.977883957\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.72 + 0.203i)T \) |
| 5 | \( 1 + (-0.910 - 2.04i)T \) |
| 11 | \( 1 + (3.04 + 1.32i)T \) |
good | 7 | \( 1 - 4.06T + 7T^{2} \) |
| 13 | \( 1 - 0.487T + 13T^{2} \) |
| 17 | \( 1 + 6.71iT - 17T^{2} \) |
| 19 | \( 1 + 1.77iT - 19T^{2} \) |
| 23 | \( 1 - 4.87T + 23T^{2} \) |
| 29 | \( 1 + 1.32T + 29T^{2} \) |
| 31 | \( 1 - 6.21T + 31T^{2} \) |
| 37 | \( 1 - 7.96iT - 37T^{2} \) |
| 41 | \( 1 + 5.07T + 41T^{2} \) |
| 43 | \( 1 + 4.68T + 43T^{2} \) |
| 47 | \( 1 + 10.7T + 47T^{2} \) |
| 53 | \( 1 + 9.51T + 53T^{2} \) |
| 59 | \( 1 - 5.13iT - 59T^{2} \) |
| 61 | \( 1 - 2.61iT - 61T^{2} \) |
| 67 | \( 1 - 8.52iT - 67T^{2} \) |
| 71 | \( 1 - 6.00iT - 71T^{2} \) |
| 73 | \( 1 + 0.708T + 73T^{2} \) |
| 79 | \( 1 - 7.16iT - 79T^{2} \) |
| 83 | \( 1 - 13.8iT - 83T^{2} \) |
| 89 | \( 1 + 15.9iT - 89T^{2} \) |
| 97 | \( 1 - 0.844iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.694035526353336684749281536686, −8.663701727627427932844919699693, −8.066325545057100459082342414476, −7.32369485951270962130163637021, −6.63649224408469809544155196354, −5.22965279647639276982543963479, −4.65027870526539512461500637968, −3.13165882485486115637200366982, −2.60895205599586596859544362715, −1.41328613146511827111410756954,
1.49692026374469220654971273496, 2.07953053340908889368031515440, 3.53986908222113814314069795054, 4.70054710770112348179683848917, 5.02221376412438296555893358351, 6.26905555970846494764040083940, 7.62708225477786462378667109906, 8.153077546270276574401168206424, 8.583331380988151939630607481069, 9.498907304433052588659740169722