L(s) = 1 | + (0.309 − 0.951i)3-s + (0.809 − 0.587i)5-s + (0.236 + 0.726i)7-s + (−0.809 − 0.587i)9-s + (3.04 + 1.31i)11-s + (4.73 + 3.44i)13-s + (−0.309 − 0.951i)15-s + (−6.16 + 4.47i)17-s + (−2.38 + 7.33i)19-s + 0.763·21-s + 7.61·23-s + (0.309 − 0.951i)25-s + (−0.809 + 0.587i)27-s + (−0.809 − 2.48i)29-s + (1.11 + 0.812i)31-s + ⋯ |
L(s) = 1 | + (0.178 − 0.549i)3-s + (0.361 − 0.262i)5-s + (0.0892 + 0.274i)7-s + (−0.269 − 0.195i)9-s + (0.918 + 0.396i)11-s + (1.31 + 0.954i)13-s + (−0.0797 − 0.245i)15-s + (−1.49 + 1.08i)17-s + (−0.546 + 1.68i)19-s + 0.166·21-s + 1.58·23-s + (0.0618 − 0.190i)25-s + (−0.155 + 0.113i)27-s + (−0.150 − 0.462i)29-s + (0.200 + 0.145i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.994446314\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.994446314\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-3.04 - 1.31i)T \) |
good | 7 | \( 1 + (-0.236 - 0.726i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.73 - 3.44i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (6.16 - 4.47i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (2.38 - 7.33i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 7.61T + 23T^{2} \) |
| 29 | \( 1 + (0.809 + 2.48i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-1.11 - 0.812i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.972 + 2.99i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.854 + 2.62i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 3.32T + 43T^{2} \) |
| 47 | \( 1 + (-0.572 + 1.76i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.61 - 1.17i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.354 - 1.08i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (10.4 - 7.60i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 15.5T + 67T^{2} \) |
| 71 | \( 1 + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.14 + 6.60i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-5.78 - 4.20i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.47 + 4.70i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 1.23T + 89T^{2} \) |
| 97 | \( 1 + (9.09 + 6.60i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.390271085412432312460156755001, −8.763251849656354018566742316092, −8.332378963019535327018655792956, −7.00974946816908279233160614095, −6.41124158539066140422942580259, −5.75467499838648262005227939669, −4.36898806183121812968621525665, −3.69389939103109713504884390591, −2.08216086008798193308182354172, −1.42925092985306223727873298812,
0.907268419458868295573186266966, 2.58461704059945877190505257873, 3.41671770822027582616929991666, 4.50239760415966084056603939491, 5.26652005991497531524159193121, 6.49858090769500093112824254072, 6.88203164629428727461525623226, 8.194119159991469157814075266723, 9.108485065154399847544996347908, 9.236956770503022320061335512593