L(s) = 1 | + (−0.247 − 0.429i)2-s + (0.877 − 1.51i)4-s + (1.84 − 3.19i)5-s − 1.86·8-s − 1.83·10-s + (−0.446 − 0.772i)11-s + (−0.598 + 1.03i)13-s + (−1.29 − 2.23i)16-s + 0.249·17-s + 2.80·19-s + (−3.23 − 5.60i)20-s + (−0.221 + 0.383i)22-s + (1.23 − 2.14i)23-s + (−4.31 − 7.47i)25-s + 0.593·26-s + ⋯ |
L(s) = 1 | + (−0.175 − 0.303i)2-s + (0.438 − 0.759i)4-s + (0.825 − 1.43i)5-s − 0.658·8-s − 0.579·10-s + (−0.134 − 0.233i)11-s + (−0.165 + 0.287i)13-s + (−0.323 − 0.559i)16-s + 0.0606·17-s + 0.644·19-s + (−0.724 − 1.25i)20-s + (−0.0471 + 0.0817i)22-s + (0.258 − 0.447i)23-s + (−0.863 − 1.49i)25-s + 0.116·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.841 + 0.539i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.841 + 0.539i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.736453815\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.736453815\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.247 + 0.429i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.84 + 3.19i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.446 + 0.772i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.598 - 1.03i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 0.249T + 17T^{2} \) |
| 19 | \( 1 - 2.80T + 19T^{2} \) |
| 23 | \( 1 + (-1.23 + 2.14i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.07 + 3.58i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.79 + 3.10i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4.73T + 37T^{2} \) |
| 41 | \( 1 + (2.39 - 4.14i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.98 + 8.64i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.08 - 8.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 9.88T + 53T^{2} \) |
| 59 | \( 1 + (0.906 - 1.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.40 - 9.35i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.514 - 0.891i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.94T + 71T^{2} \) |
| 73 | \( 1 + 1.83T + 73T^{2} \) |
| 79 | \( 1 + (-0.899 - 1.55i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.16 - 10.6i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 2.40T + 89T^{2} \) |
| 97 | \( 1 + (5.52 + 9.56i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.479836882007481941305729611691, −8.751621706887782006751906787716, −7.83292216885667864700498707532, −6.63393456687661820688387494049, −5.80855653415181875511900011683, −5.22835250073408756055154499499, −4.32655778981553825276412871115, −2.72560135898294259269370286451, −1.70560738680489533992696614508, −0.74180193776828483859916356895,
1.95011694088265778649428404670, 2.93953088624929289907387728642, 3.52332301489832171316167343631, 5.10974088976400154308248342378, 6.10345509263089118589779515809, 6.78553947061436273875020493500, 7.38093341065729580026908899926, 8.134117690545274684537572739129, 9.249267974181079178881181953878, 9.923298378483550222664662040396