L(s) = 1 | + (−0.247 − 0.429i)2-s + (0.877 − 1.51i)4-s + (1.84 − 3.19i)5-s − 1.86·8-s − 1.83·10-s + (−0.446 − 0.772i)11-s + (−0.598 + 1.03i)13-s + (−1.29 − 2.23i)16-s + 0.249·17-s + 2.80·19-s + (−3.23 − 5.60i)20-s + (−0.221 + 0.383i)22-s + (1.23 − 2.14i)23-s + (−4.31 − 7.47i)25-s + 0.593·26-s + ⋯ |
L(s) = 1 | + (−0.175 − 0.303i)2-s + (0.438 − 0.759i)4-s + (0.825 − 1.43i)5-s − 0.658·8-s − 0.579·10-s + (−0.134 − 0.233i)11-s + (−0.165 + 0.287i)13-s + (−0.323 − 0.559i)16-s + 0.0606·17-s + 0.644·19-s + (−0.724 − 1.25i)20-s + (−0.0471 + 0.0817i)22-s + (0.258 − 0.447i)23-s + (−0.863 − 1.49i)25-s + 0.116·26-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(−0.841+0.539i)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)(−0.841+0.539i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
−0.841+0.539i
|
Analytic conductor: |
10.5642 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(442,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :1/2), −0.841+0.539i)
|
Particular Values
L(1) |
≈ |
1.736453815 |
L(21) |
≈ |
1.736453815 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(0.247+0.429i)T+(−1+1.73i)T2 |
| 5 | 1+(−1.84+3.19i)T+(−2.5−4.33i)T2 |
| 11 | 1+(0.446+0.772i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.598−1.03i)T+(−6.5−11.2i)T2 |
| 17 | 1−0.249T+17T2 |
| 19 | 1−2.80T+19T2 |
| 23 | 1+(−1.23+2.14i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.07+3.58i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.79+3.10i)T+(−15.5−26.8i)T2 |
| 37 | 1−4.73T+37T2 |
| 41 | 1+(2.39−4.14i)T+(−20.5−35.5i)T2 |
| 43 | 1+(4.98+8.64i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−5.08−8.81i)T+(−23.5+40.7i)T2 |
| 53 | 1+9.88T+53T2 |
| 59 | 1+(0.906−1.56i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5.40−9.35i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.514−0.891i)T+(−33.5−58.0i)T2 |
| 71 | 1−4.94T+71T2 |
| 73 | 1+1.83T+73T2 |
| 79 | 1+(−0.899−1.55i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−6.16−10.6i)T+(−41.5+71.8i)T2 |
| 89 | 1−2.40T+89T2 |
| 97 | 1+(5.52+9.56i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.479836882007481941305729611691, −8.751621706887782006751906787716, −7.83292216885667864700498707532, −6.63393456687661820688387494049, −5.80855653415181875511900011683, −5.22835250073408756055154499499, −4.32655778981553825276412871115, −2.72560135898294259269370286451, −1.70560738680489533992696614508, −0.74180193776828483859916356895,
1.95011694088265778649428404670, 2.93953088624929289907387728642, 3.52332301489832171316167343631, 5.10974088976400154308248342378, 6.10345509263089118589779515809, 6.78553947061436273875020493500, 7.38093341065729580026908899926, 8.134117690545274684537572739129, 9.249267974181079178881181953878, 9.923298378483550222664662040396