L(s) = 1 | − 1.34·2-s − 0.184·4-s + (−1.26 − 2.19i)5-s + 2.94·8-s + (1.70 + 2.95i)10-s + (0.233 − 0.405i)11-s + (2.91 − 5.04i)13-s − 3.59·16-s + (−1.93 − 3.35i)17-s + (−1.09 + 1.89i)19-s + (0.233 + 0.405i)20-s + (−0.315 + 0.545i)22-s + (−0.0530 − 0.0918i)23-s + (−0.705 + 1.22i)25-s + (−3.92 + 6.79i)26-s + ⋯ |
L(s) = 1 | − 0.952·2-s − 0.0923·4-s + (−0.566 − 0.980i)5-s + 1.04·8-s + (0.539 + 0.934i)10-s + (0.0705 − 0.122i)11-s + (0.807 − 1.39i)13-s − 0.899·16-s + (−0.470 − 0.814i)17-s + (−0.250 + 0.434i)19-s + (0.0523 + 0.0906i)20-s + (−0.0672 + 0.116i)22-s + (−0.0110 − 0.0191i)23-s + (−0.141 + 0.244i)25-s + (−0.769 + 1.33i)26-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(−0.823+0.566i)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)(−0.823+0.566i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
−0.823+0.566i
|
Analytic conductor: |
10.5642 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(226,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :1/2), −0.823+0.566i)
|
Particular Values
L(1) |
≈ |
0.5577425314 |
L(21) |
≈ |
0.5577425314 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+1.34T+2T2 |
| 5 | 1+(1.26+2.19i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−0.233+0.405i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.91+5.04i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1.93+3.35i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.09−1.89i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.0530+0.0918i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.39−7.60i)T+(−14.5+25.1i)T2 |
| 31 | 1−7.68T+31T2 |
| 37 | 1+(−3.84+6.65i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−1.11+1.92i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.613+1.06i)T+(−21.5+37.2i)T2 |
| 47 | 1+5.33T+47T2 |
| 53 | 1+(0.358+0.620i)T+(−26.5+45.8i)T2 |
| 59 | 1−0.736T+59T2 |
| 61 | 1+0.958T+61T2 |
| 67 | 1+9.63T+67T2 |
| 71 | 1+13.2T+71T2 |
| 73 | 1+(5.13+8.89i)T+(−36.5+63.2i)T2 |
| 79 | 1+12.6T+79T2 |
| 83 | 1+(−1.36−2.36i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−4.05+7.02i)T+(−44.5−77.0i)T2 |
| 97 | 1+(6.80+11.7i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.005580565919529751353984203649, −8.596492005100514195341095089825, −7.999929334081640314493986843501, −7.21197716512932420660530394202, −5.97319273124277563215589473575, −4.93942135405625988814934000333, −4.27797714492239535705207081251, −3.04225518968553811983517111953, −1.30922976347914737338850964670, −0.38739031963627469359228648863,
1.38951345142649593344204921578, 2.71193740472108446055551987836, 4.06485363713169926026262677578, 4.54988742258254241330735056671, 6.29375945383900139638674719230, 6.72023385843624936075354553970, 7.72964585173547274398376533640, 8.390499396459553033444606303060, 9.071969107341512586225973865224, 9.974458686890385131106484205722