L(s) = 1 | + (−0.404 + 1.24i)3-s + (0.309 + 0.951i)4-s + (1.55 − 1.12i)5-s + (−0.578 − 0.420i)9-s − 1.30·12-s + (0.776 + 2.39i)15-s + (−0.809 + 0.587i)16-s + (1.55 + 1.12i)20-s + 0.830·23-s + (0.828 − 2.55i)25-s + (−0.301 + 0.219i)27-s + (−0.672 − 0.488i)31-s + (0.221 − 0.680i)36-s + (−0.0879 − 0.270i)37-s − 1.37·45-s + ⋯ |
L(s) = 1 | + (−0.404 + 1.24i)3-s + (0.309 + 0.951i)4-s + (1.55 − 1.12i)5-s + (−0.578 − 0.420i)9-s − 1.30·12-s + (0.776 + 2.39i)15-s + (−0.809 + 0.587i)16-s + (1.55 + 1.12i)20-s + 0.830·23-s + (0.828 − 2.55i)25-s + (−0.301 + 0.219i)27-s + (−0.672 − 0.488i)31-s + (0.221 − 0.680i)36-s + (−0.0879 − 0.270i)37-s − 1.37·45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.309 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1331 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.309 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.306647134\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.306647134\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
good | 2 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (0.404 - 1.24i)T + (-0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (-1.55 + 1.12i)T + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - 0.830T + T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.672 + 0.488i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.0879 + 0.270i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.0879 - 0.270i)T + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (1.36 + 0.988i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.519 - 1.60i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + 1.91T + T^{2} \) |
| 71 | \( 1 + (-0.230 + 0.167i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - 1.68T + T^{2} \) |
| 97 | \( 1 + (0.672 + 0.488i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.871152857461554940304897699978, −9.193942851516843697673070914860, −8.754321341184062969470039802591, −7.65844394901027765001086454358, −6.46679939830289156352716573231, −5.63626600446155534750820470182, −4.88256199007158035484353472364, −4.19995752609921633399147646597, −2.98795578337115650828954193881, −1.75390355149563486657709909846,
1.40013686751848431108800247719, 2.07114346706589476641891385131, 3.06475965101882535152434078494, 5.07984221044910510872484868268, 5.77211288020463843571276440607, 6.53542639879672823830409593265, 6.77950548323629368803544670704, 7.66397565380443105315526872796, 9.120361364563608130185012786172, 9.740900821296738975950631601473