L(s) = 1 | + (−0.683 + 0.683i)2-s + 3.06i·4-s + (−2.52 + 4.31i)5-s + (1.91 − 1.91i)7-s + (−4.82 − 4.82i)8-s + (−1.22 − 4.67i)10-s − 16.0·11-s + (0.607 + 0.607i)13-s + 2.61i·14-s − 5.66·16-s + (−7.56 + 7.56i)17-s + 21.0i·19-s + (−13.2 − 7.75i)20-s + (10.9 − 10.9i)22-s + (25.2 + 25.2i)23-s + ⋯ |
L(s) = 1 | + (−0.341 + 0.341i)2-s + 0.766i·4-s + (−0.505 + 0.862i)5-s + (0.273 − 0.273i)7-s + (−0.603 − 0.603i)8-s + (−0.122 − 0.467i)10-s − 1.45·11-s + (0.0467 + 0.0467i)13-s + 0.186i·14-s − 0.354·16-s + (−0.444 + 0.444i)17-s + 1.10i·19-s + (−0.661 − 0.387i)20-s + (0.498 − 0.498i)22-s + (1.09 + 1.09i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.955 - 0.293i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.955 - 0.293i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.103070 + 0.686067i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.103070 + 0.686067i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.52 - 4.31i)T \) |
good | 2 | \( 1 + (0.683 - 0.683i)T - 4iT^{2} \) |
| 7 | \( 1 + (-1.91 + 1.91i)T - 49iT^{2} \) |
| 11 | \( 1 + 16.0T + 121T^{2} \) |
| 13 | \( 1 + (-0.607 - 0.607i)T + 169iT^{2} \) |
| 17 | \( 1 + (7.56 - 7.56i)T - 289iT^{2} \) |
| 19 | \( 1 - 21.0iT - 361T^{2} \) |
| 23 | \( 1 + (-25.2 - 25.2i)T + 529iT^{2} \) |
| 29 | \( 1 + 13.4iT - 841T^{2} \) |
| 31 | \( 1 + 39.2T + 961T^{2} \) |
| 37 | \( 1 + (-5.47 + 5.47i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 69.4T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-55.6 - 55.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-13.7 + 13.7i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-34.8 - 34.8i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 62.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 67.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-29.2 + 29.2i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 71.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + (23.5 + 23.5i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 5.61iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (26.0 + 26.0i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 23.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-97.3 + 97.3i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.33821339183932304242268971746, −12.50127002395672650705220684696, −11.26721219517520895200166619090, −10.52151655700568938758429409641, −9.119051214251778426451550698543, −7.67052406439138037205321831339, −7.56092577740206340417167054825, −5.95737219518420315485119736590, −4.10553126193122146566399299255, −2.81805364705634453381426278192,
0.50348031144543709441697563165, 2.47549666159035279967223394215, 4.73902359518812485646393706717, 5.51473225931288940947306669750, 7.26492183477160666783263532014, 8.607182249108369335392023360963, 9.255345784444892228366153344449, 10.66776065294930472710272343138, 11.24603558339712105509317773805, 12.53587171895048411327707494279