Properties

Label 2-135-135.104-c2-0-32
Degree $2$
Conductor $135$
Sign $-0.599 + 0.800i$
Analytic cond. $3.67848$
Root an. cond. $1.91793$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.03 + 0.741i)2-s + (−2.69 − 1.31i)3-s + (0.538 + 0.451i)4-s + (−4.62 − 1.90i)5-s + (−4.52 − 4.67i)6-s + (−2.32 − 2.76i)7-s + (−3.57 − 6.19i)8-s + (5.56 + 7.07i)9-s + (−8.00 − 7.31i)10-s + (−8.70 + 1.53i)11-s + (−0.861 − 1.92i)12-s + (−3.15 − 8.66i)13-s + (−2.68 − 7.36i)14-s + (9.97 + 11.2i)15-s + (−3.18 − 18.0i)16-s + (9.89 − 17.1i)17-s + ⋯
L(s)  = 1  + (1.01 + 0.370i)2-s + (−0.899 − 0.436i)3-s + (0.134 + 0.112i)4-s + (−0.924 − 0.381i)5-s + (−0.754 − 0.778i)6-s + (−0.332 − 0.395i)7-s + (−0.446 − 0.773i)8-s + (0.618 + 0.786i)9-s + (−0.800 − 0.731i)10-s + (−0.790 + 0.139i)11-s + (−0.0717 − 0.160i)12-s + (−0.242 − 0.666i)13-s + (−0.191 − 0.526i)14-s + (0.664 + 0.747i)15-s + (−0.198 − 1.12i)16-s + (0.581 − 1.00i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.599 + 0.800i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.599 + 0.800i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $-0.599 + 0.800i$
Analytic conductor: \(3.67848\)
Root analytic conductor: \(1.91793\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (104, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1),\ -0.599 + 0.800i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.364296 - 0.727699i\)
\(L(\frac12)\) \(\approx\) \(0.364296 - 0.727699i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (2.69 + 1.31i)T \)
5 \( 1 + (4.62 + 1.90i)T \)
good2 \( 1 + (-2.03 - 0.741i)T + (3.06 + 2.57i)T^{2} \)
7 \( 1 + (2.32 + 2.76i)T + (-8.50 + 48.2i)T^{2} \)
11 \( 1 + (8.70 - 1.53i)T + (113. - 41.3i)T^{2} \)
13 \( 1 + (3.15 + 8.66i)T + (-129. + 108. i)T^{2} \)
17 \( 1 + (-9.89 + 17.1i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (-12.1 - 21.0i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (4.74 + 3.98i)T + (91.8 + 520. i)T^{2} \)
29 \( 1 + (5.21 - 14.3i)T + (-644. - 540. i)T^{2} \)
31 \( 1 + (9.90 + 8.30i)T + (166. + 946. i)T^{2} \)
37 \( 1 + (9.23 + 5.33i)T + (684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (23.8 + 65.6i)T + (-1.28e3 + 1.08e3i)T^{2} \)
43 \( 1 + (-58.3 + 10.2i)T + (1.73e3 - 632. i)T^{2} \)
47 \( 1 + (12.6 - 10.6i)T + (383. - 2.17e3i)T^{2} \)
53 \( 1 + 85.3T + 2.80e3T^{2} \)
59 \( 1 + (60.9 + 10.7i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (-55.8 + 46.8i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (-7.87 - 21.6i)T + (-3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (-49.0 - 28.3i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (-101. + 58.5i)T + (2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (7.55 + 2.74i)T + (4.78e3 + 4.01e3i)T^{2} \)
83 \( 1 + (77.8 + 28.3i)T + (5.27e3 + 4.42e3i)T^{2} \)
89 \( 1 + (-102. + 59.2i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-30.2 + 5.33i)T + (8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52399535410415952233235987860, −12.16880544594785280282420664247, −10.81565500288111489823263166171, −9.720186410512388071480775487767, −7.83384594111307227654621353879, −7.08168990249176935847734401138, −5.63374437864257550450950269128, −4.92032765580000074366434875024, −3.54726456740142647351784179933, −0.43810490370730035113976852606, 3.05990767898354770880351845712, 4.22840838105117091120304400223, 5.25832757346775915378297013946, 6.44893548870145377204560629277, 7.927141386932714418018807260087, 9.390880867516301212861127748655, 10.77520451283879574282970831339, 11.50460071280079577744714076102, 12.28498792463753331486756599209, 13.03274775302503330410060413460

Graph of the $Z$-function along the critical line