L(s) = 1 | + i·2-s − 4-s + i·7-s − i·8-s + 2i·13-s − 14-s + 16-s + 6i·17-s + 19-s − 6i·23-s − 2·26-s − i·28-s − 6·29-s + 5·31-s + i·32-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.377i·7-s − 0.353i·8-s + 0.554i·13-s − 0.267·14-s + 0.250·16-s + 1.45i·17-s + 0.229·19-s − 1.25i·23-s − 0.392·26-s − 0.188i·28-s − 1.11·29-s + 0.898·31-s + 0.176i·32-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.102353884 |
L(21) |
≈ |
1.102353884 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1−6iT−17T2 |
| 19 | 1−T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1−5T+31T2 |
| 37 | 1−7iT−37T2 |
| 41 | 1+12T+41T2 |
| 43 | 1−11iT−43T2 |
| 47 | 1−12iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+7T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+7iT−73T2 |
| 79 | 1−T+79T2 |
| 83 | 1−6iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.836622120398146107072901775391, −8.944114795050053596617946401790, −8.325396380328993940725518319958, −7.57982628729479529230328223731, −6.44522956847503204492409833762, −6.10652183940650925047503430102, −4.91882461052074495254691884640, −4.17832460918002345553434728074, −2.98293020204661445779113799761, −1.55390017061958050955214855550,
0.45994623988403635555091252231, 1.88115637931122366117318753030, 3.09075971304660146306979084986, 3.86161969296874436345554460870, 5.03583953417591464402076865678, 5.64457833596253544159827872758, 7.03961768579907224725114094771, 7.58191430796751067552709408838, 8.659931308072713457773860968380, 9.389517595187708570774154348231