L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (1 + 1.73i)7-s + 0.999·8-s + (−2 + 3.46i)13-s + (0.999 − 1.73i)14-s + (−0.5 − 0.866i)16-s − 6·17-s − 7·19-s + 3.99·26-s − 1.99·28-s + (−3 − 5.19i)29-s + (5 − 8.66i)31-s + (−0.499 + 0.866i)32-s + (3 + 5.19i)34-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.377 + 0.654i)7-s + 0.353·8-s + (−0.554 + 0.960i)13-s + (0.267 − 0.462i)14-s + (−0.125 − 0.216i)16-s − 1.45·17-s − 1.60·19-s + 0.784·26-s − 0.377·28-s + (−0.557 − 0.964i)29-s + (0.898 − 1.55i)31-s + (−0.0883 + 0.153i)32-s + (0.514 + 0.891i)34-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(−0.939−0.342i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(−0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
−0.939−0.342i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(901,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1350, ( :1/2), −0.939−0.342i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−1−1.73i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 13 | 1+(2−3.46i)T+(−6.5−11.2i)T2 |
| 17 | 1+6T+17T2 |
| 19 | 1+7T+19T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(3+5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−5+8.66i)T+(−15.5−26.8i)T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+(−4.5+7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.5+0.866i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3+5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+12T+53T2 |
| 59 | 1+(4.5−7.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2−3.46i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.5−11.2i)T+(−33.5−58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−T+73T2 |
| 79 | 1+(1+1.73i)T+(−39.5+68.4i)T2 |
| 83 | 1+(4.5+7.79i)T+(−41.5+71.8i)T2 |
| 89 | 1+15T+89T2 |
| 97 | 1+(−8.5−14.7i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.037593995785764802196392734289, −8.671884453741680039544031929574, −7.70251703631663084625827794272, −6.72601532554536440988638821294, −5.88242330502159593046046638834, −4.56841762651614364130230098575, −4.10255096288302908897523636584, −2.44540202341530139031734496939, −2.00350616689028588710931413556, 0,
1.60962770375240817886116176686, 3.00594619940090116148398393944, 4.43422675380092256601168355479, 4.90189932926467590833400999713, 6.18403561968746032644569003753, 6.78808972436785101388940283971, 7.68442796592499615592652008523, 8.363251470296773428563682808748, 9.079968569024001693247739654259