L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (1 + 1.73i)7-s + 0.999·8-s + (−2 + 3.46i)13-s + (0.999 − 1.73i)14-s + (−0.5 − 0.866i)16-s − 6·17-s − 7·19-s + 3.99·26-s − 1.99·28-s + (−3 − 5.19i)29-s + (5 − 8.66i)31-s + (−0.499 + 0.866i)32-s + (3 + 5.19i)34-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.377 + 0.654i)7-s + 0.353·8-s + (−0.554 + 0.960i)13-s + (0.267 − 0.462i)14-s + (−0.125 − 0.216i)16-s − 1.45·17-s − 1.60·19-s + 0.784·26-s − 0.377·28-s + (−0.557 − 0.964i)29-s + (0.898 − 1.55i)31-s + (−0.0883 + 0.153i)32-s + (0.514 + 0.891i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1 - 1.73i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 + 7T + 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5 + 8.66i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + (-4.5 + 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (4.5 - 7.79i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2 - 3.46i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.5 - 11.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - T + 73T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.5 + 7.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 15T + 89T^{2} \) |
| 97 | \( 1 + (-8.5 - 14.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.037593995785764802196392734289, −8.671884453741680039544031929574, −7.70251703631663084625827794272, −6.72601532554536440988638821294, −5.88242330502159593046046638834, −4.56841762651614364130230098575, −4.10255096288302908897523636584, −2.44540202341530139031734496939, −2.00350616689028588710931413556, 0,
1.60962770375240817886116176686, 3.00594619940090116148398393944, 4.43422675380092256601168355479, 4.90189932926467590833400999713, 6.18403561968746032644569003753, 6.78808972436785101388940283971, 7.68442796592499615592652008523, 8.363251470296773428563682808748, 9.079968569024001693247739654259