L(s) = 1 | + (0.603 − 1.45i)3-s + (−10.3 − 4.29i)5-s + (−13.2 + 5.47i)7-s + (17.3 + 17.3i)9-s + (16.3 + 39.5i)11-s + 70.4i·13-s + (−12.5 + 12.5i)15-s + (−52.1 − 46.8i)17-s + (25.9 − 25.9i)19-s + 22.5i·21-s + (69.8 + 168. i)23-s + (0.842 + 0.842i)25-s + (75.0 − 31.0i)27-s + (−244. − 101. i)29-s + (−130. + 315. i)31-s + ⋯ |
L(s) = 1 | + (0.116 − 0.280i)3-s + (−0.928 − 0.384i)5-s + (−0.713 + 0.295i)7-s + (0.642 + 0.642i)9-s + (0.449 + 1.08i)11-s + 1.50i·13-s + (−0.215 + 0.215i)15-s + (−0.744 − 0.667i)17-s + (0.312 − 0.312i)19-s + 0.234i·21-s + (0.633 + 1.52i)23-s + (0.00674 + 0.00674i)25-s + (0.534 − 0.221i)27-s + (−1.56 − 0.648i)29-s + (−0.757 + 1.82i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.129 - 0.991i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.611161 + 0.696178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.611161 + 0.696178i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (52.1 + 46.8i)T \) |
good | 3 | \( 1 + (-0.603 + 1.45i)T + (-19.0 - 19.0i)T^{2} \) |
| 5 | \( 1 + (10.3 + 4.29i)T + (88.3 + 88.3i)T^{2} \) |
| 7 | \( 1 + (13.2 - 5.47i)T + (242. - 242. i)T^{2} \) |
| 11 | \( 1 + (-16.3 - 39.5i)T + (-941. + 941. i)T^{2} \) |
| 13 | \( 1 - 70.4iT - 2.19e3T^{2} \) |
| 19 | \( 1 + (-25.9 + 25.9i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + (-69.8 - 168. i)T + (-8.60e3 + 8.60e3i)T^{2} \) |
| 29 | \( 1 + (244. + 101. i)T + (1.72e4 + 1.72e4i)T^{2} \) |
| 31 | \( 1 + (130. - 315. i)T + (-2.10e4 - 2.10e4i)T^{2} \) |
| 37 | \( 1 + (-25.0 + 60.5i)T + (-3.58e4 - 3.58e4i)T^{2} \) |
| 41 | \( 1 + (-13.9 + 5.79i)T + (4.87e4 - 4.87e4i)T^{2} \) |
| 43 | \( 1 + (105. + 105. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 4.93iT - 1.03e5T^{2} \) |
| 53 | \( 1 + (-465. + 465. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (-74.6 - 74.6i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (543. - 225. i)T + (1.60e5 - 1.60e5i)T^{2} \) |
| 67 | \( 1 - 952.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-127. + 307. i)T + (-2.53e5 - 2.53e5i)T^{2} \) |
| 73 | \( 1 + (622. + 257. i)T + (2.75e5 + 2.75e5i)T^{2} \) |
| 79 | \( 1 + (-201. - 485. i)T + (-3.48e5 + 3.48e5i)T^{2} \) |
| 83 | \( 1 + (-261. + 261. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 234. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-124. - 51.6i)T + (6.45e5 + 6.45e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.95087261366595356207402528010, −12.02525959115736845226104309139, −11.25808359361279536884741477833, −9.657047544148798332312554146058, −8.971566671026969373347404236271, −7.40962656591535551201473446972, −6.89418274325112143207845863758, −4.95128248220207634394375442422, −3.85172145580690973100466175822, −1.86873701681415399533054394417,
0.46192176494733000515730423585, 3.25544414888574037749824464095, 4.00950468734708596554545666179, 5.92080218602436813260003803948, 7.06471072207897694028523844211, 8.199278584045645242571573662134, 9.357797306709748617377686027350, 10.53237551396779386361749893041, 11.28020357553672929658723856456, 12.61991431361664052785518366584