L(s) = 1 | + (0.603 + 1.45i)3-s + (−10.3 + 4.29i)5-s + (−13.2 − 5.47i)7-s + (17.3 − 17.3i)9-s + (16.3 − 39.5i)11-s − 70.4i·13-s + (−12.5 − 12.5i)15-s + (−52.1 + 46.8i)17-s + (25.9 + 25.9i)19-s − 22.5i·21-s + (69.8 − 168. i)23-s + (0.842 − 0.842i)25-s + (75.0 + 31.0i)27-s + (−244. + 101. i)29-s + (−130. − 315. i)31-s + ⋯ |
L(s) = 1 | + (0.116 + 0.280i)3-s + (−0.928 + 0.384i)5-s + (−0.713 − 0.295i)7-s + (0.642 − 0.642i)9-s + (0.449 − 1.08i)11-s − 1.50i·13-s + (−0.215 − 0.215i)15-s + (−0.744 + 0.667i)17-s + (0.312 + 0.312i)19-s − 0.234i·21-s + (0.633 − 1.52i)23-s + (0.00674 − 0.00674i)25-s + (0.534 + 0.221i)27-s + (−1.56 + 0.648i)29-s + (−0.757 − 1.82i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.611161 - 0.696178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.611161 - 0.696178i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (52.1 - 46.8i)T \) |
good | 3 | \( 1 + (-0.603 - 1.45i)T + (-19.0 + 19.0i)T^{2} \) |
| 5 | \( 1 + (10.3 - 4.29i)T + (88.3 - 88.3i)T^{2} \) |
| 7 | \( 1 + (13.2 + 5.47i)T + (242. + 242. i)T^{2} \) |
| 11 | \( 1 + (-16.3 + 39.5i)T + (-941. - 941. i)T^{2} \) |
| 13 | \( 1 + 70.4iT - 2.19e3T^{2} \) |
| 19 | \( 1 + (-25.9 - 25.9i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + (-69.8 + 168. i)T + (-8.60e3 - 8.60e3i)T^{2} \) |
| 29 | \( 1 + (244. - 101. i)T + (1.72e4 - 1.72e4i)T^{2} \) |
| 31 | \( 1 + (130. + 315. i)T + (-2.10e4 + 2.10e4i)T^{2} \) |
| 37 | \( 1 + (-25.0 - 60.5i)T + (-3.58e4 + 3.58e4i)T^{2} \) |
| 41 | \( 1 + (-13.9 - 5.79i)T + (4.87e4 + 4.87e4i)T^{2} \) |
| 43 | \( 1 + (105. - 105. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 - 4.93iT - 1.03e5T^{2} \) |
| 53 | \( 1 + (-465. - 465. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-74.6 + 74.6i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (543. + 225. i)T + (1.60e5 + 1.60e5i)T^{2} \) |
| 67 | \( 1 - 952.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-127. - 307. i)T + (-2.53e5 + 2.53e5i)T^{2} \) |
| 73 | \( 1 + (622. - 257. i)T + (2.75e5 - 2.75e5i)T^{2} \) |
| 79 | \( 1 + (-201. + 485. i)T + (-3.48e5 - 3.48e5i)T^{2} \) |
| 83 | \( 1 + (-261. - 261. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 234. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-124. + 51.6i)T + (6.45e5 - 6.45e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.61991431361664052785518366584, −11.28020357553672929658723856456, −10.53237551396779386361749893041, −9.357797306709748617377686027350, −8.199278584045645242571573662134, −7.06471072207897694028523844211, −5.92080218602436813260003803948, −4.00950468734708596554545666179, −3.25544414888574037749824464095, −0.46192176494733000515730423585,
1.86873701681415399533054394417, 3.85172145580690973100466175822, 4.95128248220207634394375442422, 6.89418274325112143207845863758, 7.40962656591535551201473446972, 8.971566671026969373347404236271, 9.657047544148798332312554146058, 11.25808359361279536884741477833, 12.02525959115736845226104309139, 12.95087261366595356207402528010