L(s) = 1 | + (0.603 + 1.45i)3-s + (−10.3 + 4.29i)5-s + (−13.2 − 5.47i)7-s + (17.3 − 17.3i)9-s + (16.3 − 39.5i)11-s − 70.4i·13-s + (−12.5 − 12.5i)15-s + (−52.1 + 46.8i)17-s + (25.9 + 25.9i)19-s − 22.5i·21-s + (69.8 − 168. i)23-s + (0.842 − 0.842i)25-s + (75.0 + 31.0i)27-s + (−244. + 101. i)29-s + (−130. − 315. i)31-s + ⋯ |
L(s) = 1 | + (0.116 + 0.280i)3-s + (−0.928 + 0.384i)5-s + (−0.713 − 0.295i)7-s + (0.642 − 0.642i)9-s + (0.449 − 1.08i)11-s − 1.50i·13-s + (−0.215 − 0.215i)15-s + (−0.744 + 0.667i)17-s + (0.312 + 0.312i)19-s − 0.234i·21-s + (0.633 − 1.52i)23-s + (0.00674 − 0.00674i)25-s + (0.534 + 0.221i)27-s + (−1.56 + 0.648i)29-s + (−0.757 − 1.82i)31-s + ⋯ |
Λ(s)=(=(136s/2ΓC(s)L(s)(−0.129+0.991i)Λ(4−s)
Λ(s)=(=(136s/2ΓC(s+3/2)L(s)(−0.129+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
136
= 23⋅17
|
Sign: |
−0.129+0.991i
|
Analytic conductor: |
8.02425 |
Root analytic conductor: |
2.83271 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ136(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 136, ( :3/2), −0.129+0.991i)
|
Particular Values
L(2) |
≈ |
0.611161−0.696178i |
L(21) |
≈ |
0.611161−0.696178i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 17 | 1+(52.1−46.8i)T |
good | 3 | 1+(−0.603−1.45i)T+(−19.0+19.0i)T2 |
| 5 | 1+(10.3−4.29i)T+(88.3−88.3i)T2 |
| 7 | 1+(13.2+5.47i)T+(242.+242.i)T2 |
| 11 | 1+(−16.3+39.5i)T+(−941.−941.i)T2 |
| 13 | 1+70.4iT−2.19e3T2 |
| 19 | 1+(−25.9−25.9i)T+6.85e3iT2 |
| 23 | 1+(−69.8+168.i)T+(−8.60e3−8.60e3i)T2 |
| 29 | 1+(244.−101.i)T+(1.72e4−1.72e4i)T2 |
| 31 | 1+(130.+315.i)T+(−2.10e4+2.10e4i)T2 |
| 37 | 1+(−25.0−60.5i)T+(−3.58e4+3.58e4i)T2 |
| 41 | 1+(−13.9−5.79i)T+(4.87e4+4.87e4i)T2 |
| 43 | 1+(105.−105.i)T−7.95e4iT2 |
| 47 | 1−4.93iT−1.03e5T2 |
| 53 | 1+(−465.−465.i)T+1.48e5iT2 |
| 59 | 1+(−74.6+74.6i)T−2.05e5iT2 |
| 61 | 1+(543.+225.i)T+(1.60e5+1.60e5i)T2 |
| 67 | 1−952.T+3.00e5T2 |
| 71 | 1+(−127.−307.i)T+(−2.53e5+2.53e5i)T2 |
| 73 | 1+(622.−257.i)T+(2.75e5−2.75e5i)T2 |
| 79 | 1+(−201.+485.i)T+(−3.48e5−3.48e5i)T2 |
| 83 | 1+(−261.−261.i)T+5.71e5iT2 |
| 89 | 1+234.iT−7.04e5T2 |
| 97 | 1+(−124.+51.6i)T+(6.45e5−6.45e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.61991431361664052785518366584, −11.28020357553672929658723856456, −10.53237551396779386361749893041, −9.357797306709748617377686027350, −8.199278584045645242571573662134, −7.06471072207897694028523844211, −5.92080218602436813260003803948, −4.00950468734708596554545666179, −3.25544414888574037749824464095, −0.46192176494733000515730423585,
1.86873701681415399533054394417, 3.85172145580690973100466175822, 4.95128248220207634394375442422, 6.89418274325112143207845863758, 7.40962656591535551201473446972, 8.971566671026969373347404236271, 9.657047544148798332312554146058, 11.25808359361279536884741477833, 12.02525959115736845226104309139, 12.95087261366595356207402528010