L(s) = 1 | + (8.27 + 3.42i)3-s + (1.41 − 3.41i)5-s + (−0.563 − 1.36i)7-s + (37.6 + 37.6i)9-s + (54.6 − 22.6i)11-s + 12.0i·13-s + (23.3 − 23.3i)15-s + (−63.8 + 28.9i)17-s + (−29.8 + 29.8i)19-s − 13.1i·21-s + (−91.5 + 37.9i)23-s + (78.7 + 78.7i)25-s + (90.0 + 217. i)27-s + (97.5 − 235. i)29-s + (−155. − 64.5i)31-s + ⋯ |
L(s) = 1 | + (1.59 + 0.659i)3-s + (0.126 − 0.305i)5-s + (−0.0304 − 0.0734i)7-s + (1.39 + 1.39i)9-s + (1.49 − 0.620i)11-s + 0.257i·13-s + (0.402 − 0.402i)15-s + (−0.910 + 0.413i)17-s + (−0.360 + 0.360i)19-s − 0.137i·21-s + (−0.829 + 0.343i)23-s + (0.629 + 0.629i)25-s + (0.642 + 1.55i)27-s + (0.624 − 1.50i)29-s + (−0.903 − 0.374i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 136 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.76283 + 0.664846i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.76283 + 0.664846i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (63.8 - 28.9i)T \) |
good | 3 | \( 1 + (-8.27 - 3.42i)T + (19.0 + 19.0i)T^{2} \) |
| 5 | \( 1 + (-1.41 + 3.41i)T + (-88.3 - 88.3i)T^{2} \) |
| 7 | \( 1 + (0.563 + 1.36i)T + (-242. + 242. i)T^{2} \) |
| 11 | \( 1 + (-54.6 + 22.6i)T + (941. - 941. i)T^{2} \) |
| 13 | \( 1 - 12.0iT - 2.19e3T^{2} \) |
| 19 | \( 1 + (29.8 - 29.8i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + (91.5 - 37.9i)T + (8.60e3 - 8.60e3i)T^{2} \) |
| 29 | \( 1 + (-97.5 + 235. i)T + (-1.72e4 - 1.72e4i)T^{2} \) |
| 31 | \( 1 + (155. + 64.5i)T + (2.10e4 + 2.10e4i)T^{2} \) |
| 37 | \( 1 + (70.9 + 29.3i)T + (3.58e4 + 3.58e4i)T^{2} \) |
| 41 | \( 1 + (-18.0 - 43.5i)T + (-4.87e4 + 4.87e4i)T^{2} \) |
| 43 | \( 1 + (160. + 160. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 279. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + (149. - 149. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (74.5 + 74.5i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (316. + 763. i)T + (-1.60e5 + 1.60e5i)T^{2} \) |
| 67 | \( 1 + 638.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (998. + 413. i)T + (2.53e5 + 2.53e5i)T^{2} \) |
| 73 | \( 1 + (54.5 - 131. i)T + (-2.75e5 - 2.75e5i)T^{2} \) |
| 79 | \( 1 + (-201. + 83.5i)T + (3.48e5 - 3.48e5i)T^{2} \) |
| 83 | \( 1 + (-883. + 883. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 1.22e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-66.0 + 159. i)T + (-6.45e5 - 6.45e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.20502261165679538181492056544, −11.80748094629664285651979188684, −10.51547690282771894755642147134, −9.316325633936317560278652970944, −8.882724852891469874639099390320, −7.82589615704573877125624741371, −6.31253122800649645168967111386, −4.38140713455173487092718738816, −3.53668594330003550299124755597, −1.89107731094651368842411071319,
1.66196697341950403136447114777, 2.94077269203782435481902931782, 4.29063459103099662050278356005, 6.57406523641069487627515576302, 7.24000635626940995761270988501, 8.651114959647365775957796157739, 9.132946346234672787727792412096, 10.40528351122980092587849984924, 11.96555850760396292914586567445, 12.82094131406798306824906827034