L(s) = 1 | + (8.27 + 3.42i)3-s + (1.41 − 3.41i)5-s + (−0.563 − 1.36i)7-s + (37.6 + 37.6i)9-s + (54.6 − 22.6i)11-s + 12.0i·13-s + (23.3 − 23.3i)15-s + (−63.8 + 28.9i)17-s + (−29.8 + 29.8i)19-s − 13.1i·21-s + (−91.5 + 37.9i)23-s + (78.7 + 78.7i)25-s + (90.0 + 217. i)27-s + (97.5 − 235. i)29-s + (−155. − 64.5i)31-s + ⋯ |
L(s) = 1 | + (1.59 + 0.659i)3-s + (0.126 − 0.305i)5-s + (−0.0304 − 0.0734i)7-s + (1.39 + 1.39i)9-s + (1.49 − 0.620i)11-s + 0.257i·13-s + (0.402 − 0.402i)15-s + (−0.910 + 0.413i)17-s + (−0.360 + 0.360i)19-s − 0.137i·21-s + (−0.829 + 0.343i)23-s + (0.629 + 0.629i)25-s + (0.642 + 1.55i)27-s + (0.624 − 1.50i)29-s + (−0.903 − 0.374i)31-s + ⋯ |
Λ(s)=(=(136s/2ΓC(s)L(s)(0.890−0.454i)Λ(4−s)
Λ(s)=(=(136s/2ΓC(s+3/2)L(s)(0.890−0.454i)Λ(1−s)
Degree: |
2 |
Conductor: |
136
= 23⋅17
|
Sign: |
0.890−0.454i
|
Analytic conductor: |
8.02425 |
Root analytic conductor: |
2.83271 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ136(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 136, ( :3/2), 0.890−0.454i)
|
Particular Values
L(2) |
≈ |
2.76283+0.664846i |
L(21) |
≈ |
2.76283+0.664846i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 17 | 1+(63.8−28.9i)T |
good | 3 | 1+(−8.27−3.42i)T+(19.0+19.0i)T2 |
| 5 | 1+(−1.41+3.41i)T+(−88.3−88.3i)T2 |
| 7 | 1+(0.563+1.36i)T+(−242.+242.i)T2 |
| 11 | 1+(−54.6+22.6i)T+(941.−941.i)T2 |
| 13 | 1−12.0iT−2.19e3T2 |
| 19 | 1+(29.8−29.8i)T−6.85e3iT2 |
| 23 | 1+(91.5−37.9i)T+(8.60e3−8.60e3i)T2 |
| 29 | 1+(−97.5+235.i)T+(−1.72e4−1.72e4i)T2 |
| 31 | 1+(155.+64.5i)T+(2.10e4+2.10e4i)T2 |
| 37 | 1+(70.9+29.3i)T+(3.58e4+3.58e4i)T2 |
| 41 | 1+(−18.0−43.5i)T+(−4.87e4+4.87e4i)T2 |
| 43 | 1+(160.+160.i)T+7.95e4iT2 |
| 47 | 1−279.iT−1.03e5T2 |
| 53 | 1+(149.−149.i)T−1.48e5iT2 |
| 59 | 1+(74.5+74.5i)T+2.05e5iT2 |
| 61 | 1+(316.+763.i)T+(−1.60e5+1.60e5i)T2 |
| 67 | 1+638.T+3.00e5T2 |
| 71 | 1+(998.+413.i)T+(2.53e5+2.53e5i)T2 |
| 73 | 1+(54.5−131.i)T+(−2.75e5−2.75e5i)T2 |
| 79 | 1+(−201.+83.5i)T+(3.48e5−3.48e5i)T2 |
| 83 | 1+(−883.+883.i)T−5.71e5iT2 |
| 89 | 1−1.22e3iT−7.04e5T2 |
| 97 | 1+(−66.0+159.i)T+(−6.45e5−6.45e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.20502261165679538181492056544, −11.80748094629664285651979188684, −10.51547690282771894755642147134, −9.316325633936317560278652970944, −8.882724852891469874639099390320, −7.82589615704573877125624741371, −6.31253122800649645168967111386, −4.38140713455173487092718738816, −3.53668594330003550299124755597, −1.89107731094651368842411071319,
1.66196697341950403136447114777, 2.94077269203782435481902931782, 4.29063459103099662050278356005, 6.57406523641069487627515576302, 7.24000635626940995761270988501, 8.651114959647365775957796157739, 9.132946346234672787727792412096, 10.40528351122980092587849984924, 11.96555850760396292914586567445, 12.82094131406798306824906827034