Properties

Label 2-1360-1.1-c1-0-21
Degree $2$
Conductor $1360$
Sign $-1$
Analytic cond. $10.8596$
Root an. cond. $3.29539$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73·3-s + 5-s + 2.73·7-s + 4.46·9-s − 4.73·11-s − 4·13-s − 2.73·15-s − 17-s + 1.46·19-s − 7.46·21-s + 8.19·23-s + 25-s − 3.99·27-s − 3.46·29-s − 3.26·31-s + 12.9·33-s + 2.73·35-s − 0.535·37-s + 10.9·39-s − 3.46·41-s + 0.535·43-s + 4.46·45-s − 12.9·47-s + 0.464·49-s + 2.73·51-s + 6·53-s − 4.73·55-s + ⋯
L(s)  = 1  − 1.57·3-s + 0.447·5-s + 1.03·7-s + 1.48·9-s − 1.42·11-s − 1.10·13-s − 0.705·15-s − 0.242·17-s + 0.335·19-s − 1.62·21-s + 1.70·23-s + 0.200·25-s − 0.769·27-s − 0.643·29-s − 0.586·31-s + 2.25·33-s + 0.461·35-s − 0.0881·37-s + 1.74·39-s − 0.541·41-s + 0.0817·43-s + 0.665·45-s − 1.88·47-s + 0.0663·49-s + 0.382·51-s + 0.824·53-s − 0.638·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1360\)    =    \(2^{4} \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(10.8596\)
Root analytic conductor: \(3.29539\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1360,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + 2.73T + 3T^{2} \)
7 \( 1 - 2.73T + 7T^{2} \)
11 \( 1 + 4.73T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
19 \( 1 - 1.46T + 19T^{2} \)
23 \( 1 - 8.19T + 23T^{2} \)
29 \( 1 + 3.46T + 29T^{2} \)
31 \( 1 + 3.26T + 31T^{2} \)
37 \( 1 + 0.535T + 37T^{2} \)
41 \( 1 + 3.46T + 41T^{2} \)
43 \( 1 - 0.535T + 43T^{2} \)
47 \( 1 + 12.9T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 2.53T + 59T^{2} \)
61 \( 1 + 4.92T + 61T^{2} \)
67 \( 1 - 10T + 67T^{2} \)
71 \( 1 + 11.6T + 71T^{2} \)
73 \( 1 - 6.39T + 73T^{2} \)
79 \( 1 + 14.5T + 79T^{2} \)
83 \( 1 + 8.53T + 83T^{2} \)
89 \( 1 - 4.39T + 89T^{2} \)
97 \( 1 + 4.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.426737054609399808742414894577, −8.251330306077523802405396945697, −7.36926926223187686397752337944, −6.73786045678305662885440027409, −5.42916087698959198947136827595, −5.26342107414819848000697702043, −4.55546737882726099236283732875, −2.79362646579380484496800247011, −1.52216316616934081123372279623, 0, 1.52216316616934081123372279623, 2.79362646579380484496800247011, 4.55546737882726099236283732875, 5.26342107414819848000697702043, 5.42916087698959198947136827595, 6.73786045678305662885440027409, 7.36926926223187686397752337944, 8.251330306077523802405396945697, 9.426737054609399808742414894577

Graph of the $Z$-function along the critical line