Properties

Label 2-14-1.1-c7-0-0
Degree $2$
Conductor $14$
Sign $1$
Analytic cond. $4.37339$
Root an. cond. $2.09126$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 82·3-s + 64·4-s + 448·5-s + 656·6-s − 343·7-s − 512·8-s + 4.53e3·9-s − 3.58e3·10-s + 2.40e3·11-s − 5.24e3·12-s + 7.11e3·13-s + 2.74e3·14-s − 3.67e4·15-s + 4.09e3·16-s + 2.48e3·17-s − 3.62e4·18-s + 3.64e4·19-s + 2.86e4·20-s + 2.81e4·21-s − 1.92e4·22-s − 1.28e4·23-s + 4.19e4·24-s + 1.22e5·25-s − 5.69e4·26-s − 1.92e5·27-s − 2.19e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.75·3-s + 1/2·4-s + 1.60·5-s + 1.23·6-s − 0.377·7-s − 0.353·8-s + 2.07·9-s − 1.13·10-s + 0.545·11-s − 0.876·12-s + 0.898·13-s + 0.267·14-s − 2.81·15-s + 1/4·16-s + 0.122·17-s − 1.46·18-s + 1.22·19-s + 0.801·20-s + 0.662·21-s − 0.385·22-s − 0.220·23-s + 0.619·24-s + 1.56·25-s − 0.635·26-s − 1.88·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $1$
Analytic conductor: \(4.37339\)
Root analytic conductor: \(2.09126\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.8307900383\)
\(L(\frac12)\) \(\approx\) \(0.8307900383\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{3} T \)
7 \( 1 + p^{3} T \)
good3 \( 1 + 82 T + p^{7} T^{2} \)
5 \( 1 - 448 T + p^{7} T^{2} \)
11 \( 1 - 2408 T + p^{7} T^{2} \)
13 \( 1 - 7116 T + p^{7} T^{2} \)
17 \( 1 - 2486 T + p^{7} T^{2} \)
19 \( 1 - 36482 T + p^{7} T^{2} \)
23 \( 1 + 560 p T + p^{7} T^{2} \)
29 \( 1 + 88094 T + p^{7} T^{2} \)
31 \( 1 - 282636 T + p^{7} T^{2} \)
37 \( 1 + 214534 T + p^{7} T^{2} \)
41 \( 1 + 140874 T + p^{7} T^{2} \)
43 \( 1 - 848 p T + p^{7} T^{2} \)
47 \( 1 - 716868 T + p^{7} T^{2} \)
53 \( 1 + 56946 T + p^{7} T^{2} \)
59 \( 1 + 2149862 T + p^{7} T^{2} \)
61 \( 1 - 3084360 T + p^{7} T^{2} \)
67 \( 1 + 3034364 T + p^{7} T^{2} \)
71 \( 1 + 106624 T + p^{7} T^{2} \)
73 \( 1 - 988930 T + p^{7} T^{2} \)
79 \( 1 - 3415896 T + p^{7} T^{2} \)
83 \( 1 + 15142 T + p^{7} T^{2} \)
89 \( 1 - 174810 T + p^{7} T^{2} \)
97 \( 1 - 13506790 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.73610505753424173474109583908, −17.02950834184976504205130192613, −15.96849769400455349787404246440, −13.56339706571102621655797947069, −11.97413054261582370033651680060, −10.57689597773280735553669507498, −9.531843796425403344433679608492, −6.59539017034699864580637435114, −5.62616050802270837992013920583, −1.19385621467107446928197029499, 1.19385621467107446928197029499, 5.62616050802270837992013920583, 6.59539017034699864580637435114, 9.531843796425403344433679608492, 10.57689597773280735553669507498, 11.97413054261582370033651680060, 13.56339706571102621655797947069, 15.96849769400455349787404246440, 17.02950834184976504205130192613, 17.73610505753424173474109583908

Graph of the $Z$-function along the critical line