L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·6-s + (0.5 + 0.866i)7-s − 0.999·8-s + (0.499 + 0.866i)10-s + (−0.499 + 0.866i)12-s + 0.999·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + 0.999·20-s + (0.499 − 0.866i)21-s + (−0.5 + 0.866i)23-s + (0.499 + 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·6-s + (0.5 + 0.866i)7-s − 0.999·8-s + (0.499 + 0.866i)10-s + (−0.499 + 0.866i)12-s + 0.999·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + 0.999·20-s + (0.499 − 0.866i)21-s + (−0.5 + 0.866i)23-s + (0.499 + 0.866i)24-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(0.0633+0.997i)Λ(1−s)
Λ(s)=(=(140s/2ΓC(s)L(s)(0.0633+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
0.0633+0.997i
|
Analytic conductor: |
0.0698691 |
Root analytic conductor: |
0.264327 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :0), 0.0633+0.997i)
|
Particular Values
L(21) |
≈ |
0.6380148278 |
L(21) |
≈ |
0.6380148278 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 5 | 1+(0.5−0.866i)T |
| 7 | 1+(−0.5−0.866i)T |
good | 3 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+T+T2 |
| 43 | 1−T+T2 |
| 47 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T+T2 |
| 89 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.91953457458712685832370021318, −11.89730415182283369245167736241, −11.59390338033710325339197060635, −10.49131899340443749749830472998, −9.186924837552491493319425722300, −7.71848071459985778649623621210, −6.44825492248817334948738652479, −5.42165937945702167287681403977, −3.69435910234721680945246195208, −2.07304643702320871970159871316,
3.98412937626303021390155283110, 4.62317910412855121571655553895, 5.67425283931826133655283997430, 7.29984296400960119785591340565, 8.208014038692492856373607073400, 9.392275456734232582728614569972, 10.67564303383999914924915166349, 11.71208045192582949871815458486, 12.78482575618033582120647928994, 13.72109285787297334621672318409