L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·6-s + (0.5 + 0.866i)7-s − 0.999·8-s + (0.499 + 0.866i)10-s + (−0.499 + 0.866i)12-s + 0.999·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + 0.999·20-s + (0.499 − 0.866i)21-s + (−0.5 + 0.866i)23-s + (0.499 + 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·6-s + (0.5 + 0.866i)7-s − 0.999·8-s + (0.499 + 0.866i)10-s + (−0.499 + 0.866i)12-s + 0.999·14-s + 0.999·15-s + (−0.5 + 0.866i)16-s + 0.999·20-s + (0.499 − 0.866i)21-s + (−0.5 + 0.866i)23-s + (0.499 + 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6380148278\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6380148278\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.91953457458712685832370021318, −11.89730415182283369245167736241, −11.59390338033710325339197060635, −10.49131899340443749749830472998, −9.186924837552491493319425722300, −7.71848071459985778649623621210, −6.44825492248817334948738652479, −5.42165937945702167287681403977, −3.69435910234721680945246195208, −2.07304643702320871970159871316,
3.98412937626303021390155283110, 4.62317910412855121571655553895, 5.67425283931826133655283997430, 7.29984296400960119785591340565, 8.208014038692492856373607073400, 9.392275456734232582728614569972, 10.67564303383999914924915166349, 11.71208045192582949871815458486, 12.78482575618033582120647928994, 13.72109285787297334621672318409