L(s) = 1 | + (1 + 2i)5-s + i·7-s + 3·9-s − 4i·13-s + 4i·17-s − 4·19-s − 8i·23-s + (−3 + 4i)25-s − 2·29-s − 8·31-s + (−2 + i)35-s − 8i·37-s + 6·41-s − 8i·43-s + (3 + 6i)45-s + ⋯ |
L(s) = 1 | + (0.447 + 0.894i)5-s + 0.377i·7-s + 9-s − 1.10i·13-s + 0.970i·17-s − 0.917·19-s − 1.66i·23-s + (−0.600 + 0.800i)25-s − 0.371·29-s − 1.43·31-s + (−0.338 + 0.169i)35-s − 1.31i·37-s + 0.937·41-s − 1.21i·43-s + (0.447 + 0.894i)45-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(140s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
1.11790 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
1.15984+0.273802i |
L(21) |
≈ |
1.15984+0.273802i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1−2i)T |
| 7 | 1−iT |
good | 3 | 1−3T2 |
| 11 | 1+11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1−4iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+8iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+8T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1−8iT−67T2 |
| 71 | 1−12T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.96669995256079151075404019677, −12.56486098484899281556676128666, −10.79324829091812215006432572837, −10.45585803066577920268658596337, −9.172468262081889166146317305118, −7.85347736771192485577263380643, −6.70175068557014595121269523456, −5.65226771146563682921522801148, −3.93490860985937793236879916016, −2.27423480707383389006180586212,
1.67830909819770971279465816738, 4.03744434739196994906888648472, 5.12471343564457321137671406627, 6.62707383899723269380668387610, 7.73105409135580991251498714852, 9.187506760102842660251056287206, 9.732895421012609469365159122906, 11.10031189249695439529331808755, 12.18572119518809602416269541520, 13.19936138384739914382352658115