L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s + (2.5 + 0.866i)7-s + (1 − 1.73i)9-s + (−3 − 5.19i)11-s + 2·13-s − 0.999·15-s + (3 + 5.19i)17-s + (−4 + 6.92i)19-s + (−0.500 − 2.59i)21-s + (−1.5 + 2.59i)23-s + (−0.499 − 0.866i)25-s − 5·27-s + 3·29-s + (−1 − 1.73i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.223 − 0.387i)5-s + (0.944 + 0.327i)7-s + (0.333 − 0.577i)9-s + (−0.904 − 1.56i)11-s + 0.554·13-s − 0.258·15-s + (0.727 + 1.26i)17-s + (−0.917 + 1.58i)19-s + (−0.109 − 0.566i)21-s + (−0.312 + 0.541i)23-s + (−0.0999 − 0.173i)25-s − 0.962·27-s + 0.557·29-s + (−0.179 − 0.311i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02035 - 0.427612i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02035 - 0.427612i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-2.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (3 + 5.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4 - 6.92i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 5T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6 + 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 - 6.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-5 - 8.66i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3T + 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.92537522565612462755954713376, −12.12519234019566390850642585439, −11.08619625972759325409613725196, −10.10354980205228988436042381203, −8.444227188983535485232190633415, −8.064615327217175668888713984766, −6.20864127638802650703356683793, −5.53064951770157521542506418499, −3.72731121181989691548103376156, −1.50858264136031691399360890224,
2.30107921941669512543073014083, 4.48615001777838913573719204557, 5.17040697582510466059222722227, 6.99365084362842027402329299925, 7.82713327274107256128074261923, 9.338167679084910960978160382074, 10.49487441071752086039410885698, 10.90730112731691485270055581781, 12.22731696367484953935176051160, 13.36706048412841757629063522976