L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s + (2.5 + 0.866i)7-s + (1 − 1.73i)9-s + (−3 − 5.19i)11-s + 2·13-s − 0.999·15-s + (3 + 5.19i)17-s + (−4 + 6.92i)19-s + (−0.500 − 2.59i)21-s + (−1.5 + 2.59i)23-s + (−0.499 − 0.866i)25-s − 5·27-s + 3·29-s + (−1 − 1.73i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.223 − 0.387i)5-s + (0.944 + 0.327i)7-s + (0.333 − 0.577i)9-s + (−0.904 − 1.56i)11-s + 0.554·13-s − 0.258·15-s + (0.727 + 1.26i)17-s + (−0.917 + 1.58i)19-s + (−0.109 − 0.566i)21-s + (−0.312 + 0.541i)23-s + (−0.0999 − 0.173i)25-s − 0.962·27-s + 0.557·29-s + (−0.179 − 0.311i)31-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(0.701+0.712i)Λ(2−s)
Λ(s)=(=(140s/2ΓC(s+1/2)L(s)(0.701+0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
0.701+0.712i
|
Analytic conductor: |
1.11790 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :1/2), 0.701+0.712i)
|
Particular Values
L(1) |
≈ |
1.02035−0.427612i |
L(21) |
≈ |
1.02035−0.427612i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.5+0.866i)T |
| 7 | 1+(−2.5−0.866i)T |
good | 3 | 1+(0.5+0.866i)T+(−1.5+2.59i)T2 |
| 11 | 1+(3+5.19i)T+(−5.5+9.52i)T2 |
| 13 | 1−2T+13T2 |
| 17 | 1+(−3−5.19i)T+(−8.5+14.7i)T2 |
| 19 | 1+(4−6.92i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.5−2.59i)T+(−11.5−19.9i)T2 |
| 29 | 1−3T+29T2 |
| 31 | 1+(1+1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4−6.92i)T+(−18.5−32.0i)T2 |
| 41 | 1+3T+41T2 |
| 43 | 1−5T+43T2 |
| 47 | 1+(−23.5−40.7i)T2 |
| 53 | 1+(6+10.3i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.5−6.06i)T+(−33.5+58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1+(−5−8.66i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−2+3.46i)T+(−39.5−68.4i)T2 |
| 83 | 1−3T+83T2 |
| 89 | 1+(−1.5+2.59i)T+(−44.5−77.0i)T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.92537522565612462755954713376, −12.12519234019566390850642585439, −11.08619625972759325409613725196, −10.10354980205228988436042381203, −8.444227188983535485232190633415, −8.064615327217175668888713984766, −6.20864127638802650703356683793, −5.53064951770157521542506418499, −3.72731121181989691548103376156, −1.50858264136031691399360890224,
2.30107921941669512543073014083, 4.48615001777838913573719204557, 5.17040697582510466059222722227, 6.99365084362842027402329299925, 7.82713327274107256128074261923, 9.338167679084910960978160382074, 10.49487441071752086039410885698, 10.90730112731691485270055581781, 12.22731696367484953935176051160, 13.36706048412841757629063522976