L(s) = 1 | + 3·3-s + 5-s + 7-s + 3·9-s + 2·11-s − 12·13-s + 3·15-s − 2·17-s + 3·21-s + 9·23-s + 6·29-s − 2·31-s + 6·33-s + 35-s − 8·37-s − 36·39-s + 10·41-s + 2·43-s + 3·45-s − 8·47-s − 6·49-s − 6·51-s − 4·53-s + 2·55-s + 8·59-s − 7·61-s + 3·63-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.447·5-s + 0.377·7-s + 9-s + 0.603·11-s − 3.32·13-s + 0.774·15-s − 0.485·17-s + 0.654·21-s + 1.87·23-s + 1.11·29-s − 0.359·31-s + 1.04·33-s + 0.169·35-s − 1.31·37-s − 5.76·39-s + 1.56·41-s + 0.304·43-s + 0.447·45-s − 1.16·47-s − 6/7·49-s − 0.840·51-s − 0.549·53-s + 0.269·55-s + 1.04·59-s − 0.896·61-s + 0.377·63-s + ⋯ |
Λ(s)=(=(19600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(19600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
19600
= 24⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
1.24971 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 19600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.927964035 |
L(21) |
≈ |
1.927964035 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−T+T2 |
| 7 | C2 | 1−T+pT2 |
good | 3 | C2 | (1−pT+pT2)(1+pT2) |
| 11 | C22 | 1−2T−7T2−2pT3+p2T4 |
| 13 | C2 | (1+6T+pT2)2 |
| 17 | C22 | 1+2T−13T2+2pT3+p2T4 |
| 19 | C22 | 1−pT2+p2T4 |
| 23 | C22 | 1−9T+58T2−9pT3+p2T4 |
| 29 | C2 | (1−3T+pT2)2 |
| 31 | C22 | 1+2T−27T2+2pT3+p2T4 |
| 37 | C22 | 1+8T+27T2+8pT3+p2T4 |
| 41 | C2 | (1−5T+pT2)2 |
| 43 | C2 | (1−T+pT2)2 |
| 47 | C22 | 1+8T+17T2+8pT3+p2T4 |
| 53 | C22 | 1+4T−37T2+4pT3+p2T4 |
| 59 | C22 | 1−8T+5T2−8pT3+p2T4 |
| 61 | C22 | 1+7T−12T2+7pT3+p2T4 |
| 67 | C22 | 1−3T−58T2−3pT3+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C22 | 1+14T+123T2+14pT3+p2T4 |
| 79 | C2 | (1−13T+pT2)(1+17T+pT2) |
| 83 | C2 | (1+T+pT2)2 |
| 89 | C22 | 1+13T+80T2+13pT3+p2T4 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.60122216544441798159624896179, −12.94793081897094035412996021100, −12.34319715475179651851535376233, −12.26705420246019802564831307460, −11.32006546482095040395029376052, −10.89001663872321024420385947457, −10.02227595596695412511737405192, −9.567992273346978297347743560120, −9.406135851580823636168006377522, −8.696057970109697825872006184581, −8.299185265549282275363671131429, −7.61817640236334635123069039669, −7.04975275008661300422987347886, −6.76744508605909680024719185851, −5.49297177427976641054165719345, −4.86887653197319161164792302111, −4.38522254492250913918981177806, −3.06969582227842589892302745920, −2.73897840237183253770951264479, −1.95938077675247174214824466243,
1.95938077675247174214824466243, 2.73897840237183253770951264479, 3.06969582227842589892302745920, 4.38522254492250913918981177806, 4.86887653197319161164792302111, 5.49297177427976641054165719345, 6.76744508605909680024719185851, 7.04975275008661300422987347886, 7.61817640236334635123069039669, 8.299185265549282275363671131429, 8.696057970109697825872006184581, 9.406135851580823636168006377522, 9.567992273346978297347743560120, 10.02227595596695412511737405192, 10.89001663872321024420385947457, 11.32006546482095040395029376052, 12.26705420246019802564831307460, 12.34319715475179651851535376233, 12.94793081897094035412996021100, 13.60122216544441798159624896179