L(s) = 1 | + (1.5 − 0.866i)3-s + (−0.5 − 2.17i)5-s + (−1.13 − 2.38i)7-s + (2.63 + 4.56i)11-s + 2.62i·13-s + (−2.63 − 2.83i)15-s + (−0.362 + 0.209i)17-s + (1.63 − 2.83i)19-s + (−3.77 − 2.59i)21-s + (6.77 + 3.91i)23-s + (−4.50 + 2.17i)25-s + 5.19i·27-s − 4.27·29-s + (−1.63 − 2.83i)31-s + (7.91 + 4.56i)33-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)3-s + (−0.223 − 0.974i)5-s + (−0.429 − 0.902i)7-s + (0.795 + 1.37i)11-s + 0.728i·13-s + (−0.680 − 0.732i)15-s + (−0.0879 + 0.0507i)17-s + (0.375 − 0.650i)19-s + (−0.823 − 0.566i)21-s + (1.41 + 0.815i)23-s + (−0.900 + 0.435i)25-s + 0.999i·27-s − 0.793·29-s + (−0.294 − 0.509i)31-s + (1.37 + 0.795i)33-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(0.669+0.742i)Λ(2−s)
Λ(s)=(=(140s/2ΓC(s+1/2)L(s)(0.669+0.742i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
0.669+0.742i
|
Analytic conductor: |
1.11790 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :1/2), 0.669+0.742i)
|
Particular Values
L(1) |
≈ |
1.20551−0.536547i |
L(21) |
≈ |
1.20551−0.536547i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.5+2.17i)T |
| 7 | 1+(1.13+2.38i)T |
good | 3 | 1+(−1.5+0.866i)T+(1.5−2.59i)T2 |
| 11 | 1+(−2.63−4.56i)T+(−5.5+9.52i)T2 |
| 13 | 1−2.62iT−13T2 |
| 17 | 1+(0.362−0.209i)T+(8.5−14.7i)T2 |
| 19 | 1+(−1.63+2.83i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−6.77−3.91i)T+(11.5+19.9i)T2 |
| 29 | 1+4.27T+29T2 |
| 31 | 1+(1.63+2.83i)T+(−15.5+26.8i)T2 |
| 37 | 1+(8.63+4.98i)T+(18.5+32.0i)T2 |
| 41 | 1+3.72T+41T2 |
| 43 | 1+2.15iT−43T2 |
| 47 | 1+(−5.63−3.25i)T+(23.5+40.7i)T2 |
| 53 | 1+(4.91−2.83i)T+(26.5−45.8i)T2 |
| 59 | 1+(1.63+2.83i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.77+11.7i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.04−1.76i)T+(33.5−58.0i)T2 |
| 71 | 1+4.54T+71T2 |
| 73 | 1+(−5.63+3.25i)T+(36.5−63.2i)T2 |
| 79 | 1+(−3.63+6.30i)T+(−39.5−68.4i)T2 |
| 83 | 1+7.40iT−83T2 |
| 89 | 1+(3.5−6.06i)T+(−44.5−77.0i)T2 |
| 97 | 1−6.92iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.13874524576967597113312175109, −12.29280575824357261179668269929, −11.09122549690287877617055865588, −9.486777281139055447548499103507, −9.016022891953113342712542735998, −7.56724516418755785646199133188, −6.97272893606860122951055659982, −4.94560266360483320586645260055, −3.71715217461558743430330436490, −1.70187967642289420603536752132,
2.92974880914809004783737323761, 3.55780134359169229725739791947, 5.67768649321110556795598673553, 6.78512934521630292500291983834, 8.352237345153777076379897922362, 9.006782490216052697291878239909, 10.14226387607678464297435538674, 11.21232054841931837271673296354, 12.19584353081240943480137896528, 13.55106033424159937871462411124