L(s) = 1 | + (1.5 − 0.866i)3-s + (−0.5 − 2.17i)5-s + (−1.13 − 2.38i)7-s + (2.63 + 4.56i)11-s + 2.62i·13-s + (−2.63 − 2.83i)15-s + (−0.362 + 0.209i)17-s + (1.63 − 2.83i)19-s + (−3.77 − 2.59i)21-s + (6.77 + 3.91i)23-s + (−4.50 + 2.17i)25-s + 5.19i·27-s − 4.27·29-s + (−1.63 − 2.83i)31-s + (7.91 + 4.56i)33-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)3-s + (−0.223 − 0.974i)5-s + (−0.429 − 0.902i)7-s + (0.795 + 1.37i)11-s + 0.728i·13-s + (−0.680 − 0.732i)15-s + (−0.0879 + 0.0507i)17-s + (0.375 − 0.650i)19-s + (−0.823 − 0.566i)21-s + (1.41 + 0.815i)23-s + (−0.900 + 0.435i)25-s + 0.999i·27-s − 0.793·29-s + (−0.294 − 0.509i)31-s + (1.37 + 0.795i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20551 - 0.536547i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20551 - 0.536547i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 2.17i)T \) |
| 7 | \( 1 + (1.13 + 2.38i)T \) |
good | 3 | \( 1 + (-1.5 + 0.866i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-2.63 - 4.56i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.62iT - 13T^{2} \) |
| 17 | \( 1 + (0.362 - 0.209i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.63 + 2.83i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.77 - 3.91i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.27T + 29T^{2} \) |
| 31 | \( 1 + (1.63 + 2.83i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (8.63 + 4.98i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 3.72T + 41T^{2} \) |
| 43 | \( 1 + 2.15iT - 43T^{2} \) |
| 47 | \( 1 + (-5.63 - 3.25i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.91 - 2.83i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.63 + 2.83i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.77 + 11.7i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.04 - 1.76i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.54T + 71T^{2} \) |
| 73 | \( 1 + (-5.63 + 3.25i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.63 + 6.30i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.40iT - 83T^{2} \) |
| 89 | \( 1 + (3.5 - 6.06i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.13874524576967597113312175109, −12.29280575824357261179668269929, −11.09122549690287877617055865588, −9.486777281139055447548499103507, −9.016022891953113342712542735998, −7.56724516418755785646199133188, −6.97272893606860122951055659982, −4.94560266360483320586645260055, −3.71715217461558743430330436490, −1.70187967642289420603536752132,
2.92974880914809004783737323761, 3.55780134359169229725739791947, 5.67768649321110556795598673553, 6.78512934521630292500291983834, 8.352237345153777076379897922362, 9.006782490216052697291878239909, 10.14226387607678464297435538674, 11.21232054841931837271673296354, 12.19584353081240943480137896528, 13.55106033424159937871462411124