L(s) = 1 | + (1.36 − 0.365i)2-s + (1.28 + 0.739i)3-s + (1.73 − 0.998i)4-s + (−2.22 + 0.175i)5-s + (2.02 + 0.542i)6-s + (−0.664 + 2.56i)7-s + (2.00 − 1.99i)8-s + (−0.406 − 0.703i)9-s + (−2.98 + 1.05i)10-s + (−5.32 − 3.07i)11-s + (2.95 + 0.00185i)12-s + 3.33·13-s + (0.0291 + 3.74i)14-s + (−2.98 − 1.42i)15-s + (2.00 − 3.46i)16-s + (−1.27 + 2.20i)17-s + ⋯ |
L(s) = 1 | + (0.966 − 0.258i)2-s + (0.739 + 0.426i)3-s + (0.866 − 0.499i)4-s + (−0.996 + 0.0784i)5-s + (0.824 + 0.221i)6-s + (−0.250 + 0.967i)7-s + (0.707 − 0.706i)8-s + (−0.135 − 0.234i)9-s + (−0.942 + 0.333i)10-s + (−1.60 − 0.927i)11-s + (0.853 + 0.000534i)12-s + 0.924·13-s + (0.00779 + 0.999i)14-s + (−0.770 − 0.367i)15-s + (0.501 − 0.865i)16-s + (−0.309 + 0.536i)17-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(0.998+0.0490i)Λ(2−s)
Λ(s)=(=(140s/2ΓC(s+1/2)L(s)(0.998+0.0490i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
0.998+0.0490i
|
Analytic conductor: |
1.11790 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :1/2), 0.998+0.0490i)
|
Particular Values
L(1) |
≈ |
1.88837−0.0463220i |
L(21) |
≈ |
1.88837−0.0463220i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36+0.365i)T |
| 5 | 1+(2.22−0.175i)T |
| 7 | 1+(0.664−2.56i)T |
good | 3 | 1+(−1.28−0.739i)T+(1.5+2.59i)T2 |
| 11 | 1+(5.32+3.07i)T+(5.5+9.52i)T2 |
| 13 | 1−3.33T+13T2 |
| 17 | 1+(1.27−2.20i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.352−0.611i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.983−1.70i)T+(−11.5+19.9i)T2 |
| 29 | 1−5.17T+29T2 |
| 31 | 1+(3.40−5.89i)T+(−15.5−26.8i)T2 |
| 37 | 1+(5.90−3.40i)T+(18.5−32.0i)T2 |
| 41 | 1−2.53iT−41T2 |
| 43 | 1−4.59T+43T2 |
| 47 | 1+(3.78−2.18i)T+(23.5−40.7i)T2 |
| 53 | 1+(−4.80−2.77i)T+(26.5+45.8i)T2 |
| 59 | 1+(−3.40+5.89i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.07+1.77i)T+(30.5−52.8i)T2 |
| 67 | 1+(−1.45+2.51i)T+(−33.5−58.0i)T2 |
| 71 | 1+3.37iT−71T2 |
| 73 | 1+(−1.27+2.20i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−5.38+3.10i)T+(39.5−68.4i)T2 |
| 83 | 1+4.70iT−83T2 |
| 89 | 1+(5.19−3.00i)T+(44.5−77.0i)T2 |
| 97 | 1−9.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.15451963314600893542644497381, −12.25645835173303484484064291993, −11.24367273461287545476153702418, −10.39044078089492749976062530967, −8.802997885883382868649605759612, −8.030143451073897763047178071768, −6.36514841783929177849536353372, −5.16307643496821428580936307384, −3.59594005310440606460960922845, −2.86778650562995855995279332441,
2.61595154484844340083115413150, 3.92691805093723008093618327016, 5.12517419907809434159620023122, 7.00459471247330379317166017274, 7.60946595219103169455584482321, 8.469871741257807418333365888363, 10.45301280461635587068918324023, 11.25137204570767211372220717932, 12.60581043135230878570526730359, 13.23591571571264733260140220168