L(s) = 1 | + (1.36 − 0.365i)2-s + (1.28 + 0.739i)3-s + (1.73 − 0.998i)4-s + (−2.22 + 0.175i)5-s + (2.02 + 0.542i)6-s + (−0.664 + 2.56i)7-s + (2.00 − 1.99i)8-s + (−0.406 − 0.703i)9-s + (−2.98 + 1.05i)10-s + (−5.32 − 3.07i)11-s + (2.95 + 0.00185i)12-s + 3.33·13-s + (0.0291 + 3.74i)14-s + (−2.98 − 1.42i)15-s + (2.00 − 3.46i)16-s + (−1.27 + 2.20i)17-s + ⋯ |
L(s) = 1 | + (0.966 − 0.258i)2-s + (0.739 + 0.426i)3-s + (0.866 − 0.499i)4-s + (−0.996 + 0.0784i)5-s + (0.824 + 0.221i)6-s + (−0.250 + 0.967i)7-s + (0.707 − 0.706i)8-s + (−0.135 − 0.234i)9-s + (−0.942 + 0.333i)10-s + (−1.60 − 0.927i)11-s + (0.853 + 0.000534i)12-s + 0.924·13-s + (0.00779 + 0.999i)14-s + (−0.770 − 0.367i)15-s + (0.501 − 0.865i)16-s + (−0.309 + 0.536i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0490i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0490i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.88837 - 0.0463220i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.88837 - 0.0463220i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.365i)T \) |
| 5 | \( 1 + (2.22 - 0.175i)T \) |
| 7 | \( 1 + (0.664 - 2.56i)T \) |
good | 3 | \( 1 + (-1.28 - 0.739i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (5.32 + 3.07i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.33T + 13T^{2} \) |
| 17 | \( 1 + (1.27 - 2.20i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.352 - 0.611i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.983 - 1.70i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.17T + 29T^{2} \) |
| 31 | \( 1 + (3.40 - 5.89i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.90 - 3.40i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.53iT - 41T^{2} \) |
| 43 | \( 1 - 4.59T + 43T^{2} \) |
| 47 | \( 1 + (3.78 - 2.18i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.80 - 2.77i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.40 + 5.89i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.07 + 1.77i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.45 + 2.51i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.37iT - 71T^{2} \) |
| 73 | \( 1 + (-1.27 + 2.20i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.38 + 3.10i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4.70iT - 83T^{2} \) |
| 89 | \( 1 + (5.19 - 3.00i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 9.46T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.15451963314600893542644497381, −12.25645835173303484484064291993, −11.24367273461287545476153702418, −10.39044078089492749976062530967, −8.802997885883382868649605759612, −8.030143451073897763047178071768, −6.36514841783929177849536353372, −5.16307643496821428580936307384, −3.59594005310440606460960922845, −2.86778650562995855995279332441,
2.61595154484844340083115413150, 3.92691805093723008093618327016, 5.12517419907809434159620023122, 7.00459471247330379317166017274, 7.60946595219103169455584482321, 8.469871741257807418333365888363, 10.45301280461635587068918324023, 11.25137204570767211372220717932, 12.60581043135230878570526730359, 13.23591571571264733260140220168