L(s) = 1 | + (1.18 − 0.764i)2-s + (−2.38 − 0.638i)3-s + (0.831 − 1.81i)4-s + (−0.525 − 2.17i)5-s + (−3.32 + 1.06i)6-s + (−2.10 + 1.60i)7-s + (−0.401 − 2.79i)8-s + (2.68 + 1.54i)9-s + (−2.28 − 2.18i)10-s + (4.09 − 2.36i)11-s + (−3.14 + 3.80i)12-s + (0.0592 + 0.0592i)13-s + (−1.27 + 3.51i)14-s + (−0.135 + 5.51i)15-s + (−2.61 − 3.02i)16-s + (4.77 + 1.27i)17-s + ⋯ |
L(s) = 1 | + (0.841 − 0.540i)2-s + (−1.37 − 0.368i)3-s + (0.415 − 0.909i)4-s + (−0.235 − 0.971i)5-s + (−1.35 + 0.433i)6-s + (−0.794 + 0.607i)7-s + (−0.142 − 0.989i)8-s + (0.893 + 0.515i)9-s + (−0.723 − 0.690i)10-s + (1.23 − 0.713i)11-s + (−0.907 + 1.09i)12-s + (0.0164 + 0.0164i)13-s + (−0.339 + 0.940i)14-s + (−0.0349 + 1.42i)15-s + (−0.654 − 0.755i)16-s + (1.15 + 0.310i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.524 + 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.524 + 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.509780 - 0.912498i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.509780 - 0.912498i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.18 + 0.764i)T \) |
| 5 | \( 1 + (0.525 + 2.17i)T \) |
| 7 | \( 1 + (2.10 - 1.60i)T \) |
good | 3 | \( 1 + (2.38 + 0.638i)T + (2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (-4.09 + 2.36i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.0592 - 0.0592i)T + 13iT^{2} \) |
| 17 | \( 1 + (-4.77 - 1.27i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.31 + 2.27i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.292 - 1.09i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 7.27iT - 29T^{2} \) |
| 31 | \( 1 + (-4.01 + 2.31i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.596 + 2.22i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 5.71T + 41T^{2} \) |
| 43 | \( 1 + (-1.57 + 1.57i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.67 - 0.716i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-2.44 + 9.12i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.67 - 2.90i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.978 - 1.69i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.131 + 0.491i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 14.4iT - 71T^{2} \) |
| 73 | \( 1 + (2.48 - 9.26i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (3.05 - 5.28i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.62 + 5.62i)T - 83iT^{2} \) |
| 89 | \( 1 + (-14.4 - 8.34i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.81 + 5.81i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53276569132532500322316292280, −11.93325933809859549848561200757, −11.35425914435030242314746916764, −9.990358156256052254883390837029, −8.869558512200415988246399431640, −6.84745560435674768508069778518, −5.88753573432637506863298667958, −5.15436931990624916819673430089, −3.59564812655457191389960407807, −1.06837805019699597449568474699,
3.42741919658605946136204007863, 4.53995906911238604223144582898, 6.03369655538813553346183768983, 6.62819917933564965180361005140, 7.62597435546900247736553244837, 9.762013851194959437587344011536, 10.63091056783554984248051287521, 11.88256716248687467482129065845, 12.09241057052902108900440774613, 13.62435895007789363418506979105