L(s) = 1 | + (1.18 − 0.764i)2-s + (−2.38 − 0.638i)3-s + (0.831 − 1.81i)4-s + (−0.525 − 2.17i)5-s + (−3.32 + 1.06i)6-s + (−2.10 + 1.60i)7-s + (−0.401 − 2.79i)8-s + (2.68 + 1.54i)9-s + (−2.28 − 2.18i)10-s + (4.09 − 2.36i)11-s + (−3.14 + 3.80i)12-s + (0.0592 + 0.0592i)13-s + (−1.27 + 3.51i)14-s + (−0.135 + 5.51i)15-s + (−2.61 − 3.02i)16-s + (4.77 + 1.27i)17-s + ⋯ |
L(s) = 1 | + (0.841 − 0.540i)2-s + (−1.37 − 0.368i)3-s + (0.415 − 0.909i)4-s + (−0.235 − 0.971i)5-s + (−1.35 + 0.433i)6-s + (−0.794 + 0.607i)7-s + (−0.142 − 0.989i)8-s + (0.893 + 0.515i)9-s + (−0.723 − 0.690i)10-s + (1.23 − 0.713i)11-s + (−0.907 + 1.09i)12-s + (0.0164 + 0.0164i)13-s + (−0.339 + 0.940i)14-s + (−0.0349 + 1.42i)15-s + (−0.654 − 0.755i)16-s + (1.15 + 0.310i)17-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(−0.524+0.851i)Λ(2−s)
Λ(s)=(=(140s/2ΓC(s+1/2)L(s)(−0.524+0.851i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
−0.524+0.851i
|
Analytic conductor: |
1.11790 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :1/2), −0.524+0.851i)
|
Particular Values
L(1) |
≈ |
0.509780−0.912498i |
L(21) |
≈ |
0.509780−0.912498i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.18+0.764i)T |
| 5 | 1+(0.525+2.17i)T |
| 7 | 1+(2.10−1.60i)T |
good | 3 | 1+(2.38+0.638i)T+(2.59+1.5i)T2 |
| 11 | 1+(−4.09+2.36i)T+(5.5−9.52i)T2 |
| 13 | 1+(−0.0592−0.0592i)T+13iT2 |
| 17 | 1+(−4.77−1.27i)T+(14.7+8.5i)T2 |
| 19 | 1+(−1.31+2.27i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.292−1.09i)T+(−19.9+11.5i)T2 |
| 29 | 1−7.27iT−29T2 |
| 31 | 1+(−4.01+2.31i)T+(15.5−26.8i)T2 |
| 37 | 1+(0.596+2.22i)T+(−32.0+18.5i)T2 |
| 41 | 1+5.71T+41T2 |
| 43 | 1+(−1.57+1.57i)T−43iT2 |
| 47 | 1+(2.67−0.716i)T+(40.7−23.5i)T2 |
| 53 | 1+(−2.44+9.12i)T+(−45.8−26.5i)T2 |
| 59 | 1+(−1.67−2.90i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.978−1.69i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.131+0.491i)T+(−58.0−33.5i)T2 |
| 71 | 1−14.4iT−71T2 |
| 73 | 1+(2.48−9.26i)T+(−63.2−36.5i)T2 |
| 79 | 1+(3.05−5.28i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−5.62+5.62i)T−83iT2 |
| 89 | 1+(−14.4−8.34i)T+(44.5+77.0i)T2 |
| 97 | 1+(−5.81+5.81i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53276569132532500322316292280, −11.93325933809859549848561200757, −11.35425914435030242314746916764, −9.990358156256052254883390837029, −8.869558512200415988246399431640, −6.84745560435674768508069778518, −5.88753573432637506863298667958, −5.15436931990624916819673430089, −3.59564812655457191389960407807, −1.06837805019699597449568474699,
3.42741919658605946136204007863, 4.53995906911238604223144582898, 6.03369655538813553346183768983, 6.62819917933564965180361005140, 7.62597435546900247736553244837, 9.762013851194959437587344011536, 10.63091056783554984248051287521, 11.88256716248687467482129065845, 12.09241057052902108900440774613, 13.62435895007789363418506979105