L(s) = 1 | + (0.580 + 0.814i)3-s + (0.142 − 0.989i)4-s + (−0.0475 − 0.998i)7-s + (−0.327 + 0.945i)9-s + (0.888 − 0.458i)12-s + (1.16 − 0.600i)13-s + (−0.959 − 0.281i)16-s + (0.143 + 0.124i)19-s + (0.786 − 0.618i)21-s + (−0.888 + 0.458i)25-s + (−0.959 + 0.281i)27-s + (−0.995 − 0.0950i)28-s + (1.61 − 1.03i)31-s + (0.888 + 0.458i)36-s + 0.0951·37-s + ⋯ |
L(s) = 1 | + (0.580 + 0.814i)3-s + (0.142 − 0.989i)4-s + (−0.0475 − 0.998i)7-s + (−0.327 + 0.945i)9-s + (0.888 − 0.458i)12-s + (1.16 − 0.600i)13-s + (−0.959 − 0.281i)16-s + (0.143 + 0.124i)19-s + (0.786 − 0.618i)21-s + (−0.888 + 0.458i)25-s + (−0.959 + 0.281i)27-s + (−0.995 − 0.0950i)28-s + (1.61 − 1.03i)31-s + (0.888 + 0.458i)36-s + 0.0951·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1407 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 + 0.378i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1407 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 + 0.378i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.365655437\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.365655437\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.580 - 0.814i)T \) |
| 7 | \( 1 + (0.0475 + 0.998i)T \) |
| 67 | \( 1 + (0.0475 - 0.998i)T \) |
good | 2 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 5 | \( 1 + (0.888 - 0.458i)T^{2} \) |
| 11 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 13 | \( 1 + (-1.16 + 0.600i)T + (0.580 - 0.814i)T^{2} \) |
| 17 | \( 1 + (0.235 - 0.971i)T^{2} \) |
| 19 | \( 1 + (-0.143 - 0.124i)T + (0.142 + 0.989i)T^{2} \) |
| 23 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-1.61 + 1.03i)T + (0.415 - 0.909i)T^{2} \) |
| 37 | \( 1 - 0.0951T + T^{2} \) |
| 41 | \( 1 + (-0.235 + 0.971i)T^{2} \) |
| 43 | \( 1 + (-1.07 + 0.153i)T + (0.959 - 0.281i)T^{2} \) |
| 47 | \( 1 + (-0.327 + 0.945i)T^{2} \) |
| 53 | \( 1 + (0.235 + 0.971i)T^{2} \) |
| 59 | \( 1 + (-0.995 + 0.0950i)T^{2} \) |
| 61 | \( 1 + (1.91 - 0.560i)T + (0.841 - 0.540i)T^{2} \) |
| 71 | \( 1 + (-0.723 + 0.690i)T^{2} \) |
| 73 | \( 1 + (1.34 - 1.40i)T + (-0.0475 - 0.998i)T^{2} \) |
| 79 | \( 1 + (-0.915 - 1.77i)T + (-0.580 + 0.814i)T^{2} \) |
| 83 | \( 1 + (0.0475 - 0.998i)T^{2} \) |
| 89 | \( 1 + (-0.327 - 0.945i)T^{2} \) |
| 97 | \( 1 + (-0.580 + 1.00i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.881015897810035803863165780698, −9.069101747719300265267699396625, −8.154262435546445845339174261133, −7.40663482207328874149709720429, −6.24031460469296276692130018724, −5.57078669819718937243750182116, −4.48278792555911361742751908304, −3.81845553794549652178629245485, −2.65940897839852724161540275496, −1.22831713221134968030026347555,
1.72166448917007778309369517735, 2.73564177481551775723597103750, 3.48452945053310921058703218116, 4.57877484337510394353819784972, 6.10405023411206937068844189145, 6.47394956410698699440949465613, 7.58762625485116832485378334498, 8.179104344986139503165865029420, 8.879569972089805198703996439288, 9.340092826008785885035860783214