L(s) = 1 | + 5.65i·3-s − 23.0·9-s + (7 − 8.48i)11-s − 33.9i·17-s + 34·19-s + 25·25-s − 79.1i·27-s + (48 + 39.5i)33-s + 67.8i·41-s + 14·43-s + 49·49-s + 192·51-s + 192. i·57-s − 84.8i·59-s − 118. i·67-s + ⋯ |
L(s) = 1 | + 1.88i·3-s − 2.55·9-s + (0.636 − 0.771i)11-s − 1.99i·17-s + 1.78·19-s + 25-s − 2.93i·27-s + (1.45 + 1.19i)33-s + 1.65i·41-s + 0.325·43-s + 0.999·49-s + 3.76·51-s + 3.37i·57-s − 1.43i·59-s − 1.77i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.636 - 0.771i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1408 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.636 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.939077292\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.939077292\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-7 + 8.48i)T \) |
good | 3 | \( 1 - 5.65iT - 9T^{2} \) |
| 5 | \( 1 - 25T^{2} \) |
| 7 | \( 1 - 49T^{2} \) |
| 13 | \( 1 + 169T^{2} \) |
| 17 | \( 1 + 33.9iT - 289T^{2} \) |
| 19 | \( 1 - 34T + 361T^{2} \) |
| 23 | \( 1 + 529T^{2} \) |
| 29 | \( 1 + 841T^{2} \) |
| 31 | \( 1 + 961T^{2} \) |
| 37 | \( 1 - 1.36e3T^{2} \) |
| 41 | \( 1 - 67.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 14T + 1.84e3T^{2} \) |
| 47 | \( 1 + 2.20e3T^{2} \) |
| 53 | \( 1 - 2.80e3T^{2} \) |
| 59 | \( 1 + 84.8iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 3.72e3T^{2} \) |
| 67 | \( 1 + 118. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 5.04e3T^{2} \) |
| 73 | \( 1 + 33.9iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 6.24e3T^{2} \) |
| 83 | \( 1 + 158T + 6.88e3T^{2} \) |
| 89 | \( 1 + 146T + 7.92e3T^{2} \) |
| 97 | \( 1 - 94T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.448606980672001316721585055132, −9.088734362302261376946166814132, −8.128006411941461596036553135855, −7.02093925541821268823913377361, −5.85568712001207843659091171760, −5.10039122357405202353062936362, −4.51289546072563495557478006034, −3.31688673817087959069914718301, −2.94525630093632945083133632968, −0.69600379333809195685976179718,
1.00323108978335431448540679998, 1.72259473924581420520376304892, 2.79543334521202955739796031898, 3.97977300583798891503328490699, 5.47543926195793997239775194906, 6.06779412319055621916667616111, 7.14933561271745253263486918793, 7.27309956762810144426964084154, 8.396532899344779589782947259213, 8.894351808172239973495817609974