L(s) = 1 | + (−0.366 + 1.36i)2-s − 1.73i·3-s + (−1.73 − i)4-s + (0.5 − 1.86i)5-s + (2.36 + 0.633i)6-s + (−3.86 − 2.23i)7-s + (2 − 1.99i)8-s − 2.99·9-s + (2.36 + 1.36i)10-s + (1.86 − 0.5i)11-s + (−1.73 + 2.99i)12-s + (2.23 + 0.598i)13-s + (4.46 − 4.46i)14-s + (−3.23 − 0.866i)15-s + (1.99 + 3.46i)16-s + 4·17-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s − 0.999i·3-s + (−0.866 − 0.5i)4-s + (0.223 − 0.834i)5-s + (0.965 + 0.258i)6-s + (−1.46 − 0.843i)7-s + (0.707 − 0.707i)8-s − 0.999·9-s + (0.748 + 0.431i)10-s + (0.562 − 0.150i)11-s + (−0.499 + 0.866i)12-s + (0.619 + 0.165i)13-s + (1.19 − 1.19i)14-s + (−0.834 − 0.223i)15-s + (0.499 + 0.866i)16-s + 0.970·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.461+0.887i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(0.461+0.887i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.461+0.887i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(133,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), 0.461+0.887i)
|
Particular Values
L(1) |
≈ |
0.663983−0.402914i |
L(21) |
≈ |
0.663983−0.402914i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366−1.36i)T |
| 3 | 1+1.73iT |
good | 5 | 1+(−0.5+1.86i)T+(−4.33−2.5i)T2 |
| 7 | 1+(3.86+2.23i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1.86+0.5i)T+(9.52−5.5i)T2 |
| 13 | 1+(−2.23−0.598i)T+(11.2+6.5i)T2 |
| 17 | 1−4T+17T2 |
| 19 | 1+(3−3i)T−19iT2 |
| 23 | 1+(−5.59+3.23i)T+(11.5−19.9i)T2 |
| 29 | 1+(−0.232−0.866i)T+(−25.1+14.5i)T2 |
| 31 | 1+(4.59+7.96i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4.26+4.26i)T+37iT2 |
| 41 | 1+(0.696−0.401i)T+(20.5−35.5i)T2 |
| 43 | 1+(−6.33+1.69i)T+(37.2−21.5i)T2 |
| 47 | 1+(0.598−1.03i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−5.73−5.73i)T+53iT2 |
| 59 | 1+(−0.401+1.5i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−0.571−2.13i)T+(−52.8+30.5i)T2 |
| 67 | 1+(−8.33−2.23i)T+(58.0+33.5i)T2 |
| 71 | 1−2.92iT−71T2 |
| 73 | 1+7.46iT−73T2 |
| 79 | 1+(0.866−1.5i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−3.79−14.1i)T+(−71.8+41.5i)T2 |
| 89 | 1+15.8iT−89T2 |
| 97 | 1+(0.5−0.866i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.99867465693642473685032678544, −12.51674886113895300814304979273, −10.70885153941083645267889106240, −9.431577443043981254048006040540, −8.674970061269965289316890143279, −7.42532181144775920698853247253, −6.52813017654069927913816182951, −5.65611816523331335781761941739, −3.80806570891253224534312301153, −0.913121273494331531416946209800,
2.86516634859788755610611831208, 3.58274782711945581778145147432, 5.36116064237471455353744662941, 6.70775926826863527110384410604, 8.699291742906490160131586632283, 9.377429014192716184212136941679, 10.24018892755385668166855631815, 11.01899735195603900907673627857, 12.10597555208484007716368641119, 13.07732750753171736091682875281