L(s) = 1 | + 5.19i·3-s + (4.5 − 7.79i)5-s + (−15.5 − 26.8i)7-s − 27·9-s + (−7.5 − 12.9i)11-s + (18.5 − 32.0i)13-s + (40.5 + 23.3i)15-s − 42·17-s + 28·19-s + (139.5 − 80.5i)21-s + (97.5 − 168. i)23-s + (22 + 38.1i)25-s − 140. i·27-s + (−55.5 − 96.1i)29-s + (−102.5 + 177. i)31-s + ⋯ |
L(s) = 1 | + 0.999i·3-s + (0.402 − 0.697i)5-s + (−0.836 − 1.44i)7-s − 9-s + (−0.205 − 0.356i)11-s + (0.394 − 0.683i)13-s + (0.697 + 0.402i)15-s − 0.599·17-s + 0.338·19-s + (1.44 − 0.836i)21-s + (0.883 − 1.53i)23-s + (0.175 + 0.304i)25-s − 1.00i·27-s + (−0.355 − 0.615i)29-s + (−0.593 + 1.02i)31-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.173+0.984i)Λ(4−s)
Λ(s)=(=(144s/2ΓC(s+3/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
8.49627 |
Root analytic conductor: |
2.91483 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :3/2), 0.173+0.984i)
|
Particular Values
L(2) |
≈ |
0.896013−0.751844i |
L(21) |
≈ |
0.896013−0.751844i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−5.19iT |
good | 5 | 1+(−4.5+7.79i)T+(−62.5−108.i)T2 |
| 7 | 1+(15.5+26.8i)T+(−171.5+297.i)T2 |
| 11 | 1+(7.5+12.9i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+(−18.5+32.0i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+42T+4.91e3T2 |
| 19 | 1−28T+6.85e3T2 |
| 23 | 1+(−97.5+168.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(55.5+96.1i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(102.5−177.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+166T+5.06e4T2 |
| 41 | 1+(−130.5+226.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(21.5+37.2i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−88.5−153.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1−114T+1.48e5T2 |
| 59 | 1+(−79.5+137.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(95.5+165.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(210.5−364.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+156T+3.57e5T2 |
| 73 | 1−182T+3.89e5T2 |
| 79 | 1+(−566.5−981.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+(541.5+937.i)T+(−2.85e5+4.95e5i)T2 |
| 89 | 1+1.05e3T+7.04e5T2 |
| 97 | 1+(−450.5−780.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.63454411533842024513409871731, −10.93515162410398207770947964488, −10.44434004476588536725363606051, −9.387684353934934106698772709325, −8.483692024779758458543731784478, −6.93840614120262923114859104892, −5.57359751176674089642378312113, −4.37782043660692309743559654858, −3.20984528326290633803218854987, −0.56050723159954526261225446280,
1.99972156492406522762971089083, 3.09811646190709306470295566380, 5.51497934120753494774056330432, 6.39345413794908118157227988492, 7.29865575009638333516137325121, 8.792069137818794532315345192120, 9.535408448848577925756927779509, 11.08685161137955572248072520465, 11.93359629859719486312321824100, 12.90701471902972991806865397023