L(s) = 1 | + 5.19i·3-s + (4.5 − 7.79i)5-s + (−15.5 − 26.8i)7-s − 27·9-s + (−7.5 − 12.9i)11-s + (18.5 − 32.0i)13-s + (40.5 + 23.3i)15-s − 42·17-s + 28·19-s + (139.5 − 80.5i)21-s + (97.5 − 168. i)23-s + (22 + 38.1i)25-s − 140. i·27-s + (−55.5 − 96.1i)29-s + (−102.5 + 177. i)31-s + ⋯ |
L(s) = 1 | + 0.999i·3-s + (0.402 − 0.697i)5-s + (−0.836 − 1.44i)7-s − 9-s + (−0.205 − 0.356i)11-s + (0.394 − 0.683i)13-s + (0.697 + 0.402i)15-s − 0.599·17-s + 0.338·19-s + (1.44 − 0.836i)21-s + (0.883 − 1.53i)23-s + (0.175 + 0.304i)25-s − 1.00i·27-s + (−0.355 − 0.615i)29-s + (−0.593 + 1.02i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.896013 - 0.751844i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.896013 - 0.751844i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 5.19iT \) |
good | 5 | \( 1 + (-4.5 + 7.79i)T + (-62.5 - 108. i)T^{2} \) |
| 7 | \( 1 + (15.5 + 26.8i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (7.5 + 12.9i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-18.5 + 32.0i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 42T + 4.91e3T^{2} \) |
| 19 | \( 1 - 28T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-97.5 + 168. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (55.5 + 96.1i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (102.5 - 177. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 166T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-130.5 + 226. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (21.5 + 37.2i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-88.5 - 153. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 - 114T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-79.5 + 137. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (95.5 + 165. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (210.5 - 364. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 156T + 3.57e5T^{2} \) |
| 73 | \( 1 - 182T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-566.5 - 981. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (541.5 + 937. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 + 1.05e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-450.5 - 780. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.63454411533842024513409871731, −10.93515162410398207770947964488, −10.44434004476588536725363606051, −9.387684353934934106698772709325, −8.483692024779758458543731784478, −6.93840614120262923114859104892, −5.57359751176674089642378312113, −4.37782043660692309743559654858, −3.20984528326290633803218854987, −0.56050723159954526261225446280,
1.99972156492406522762971089083, 3.09811646190709306470295566380, 5.51497934120753494774056330432, 6.39345413794908118157227988492, 7.29865575009638333516137325121, 8.792069137818794532315345192120, 9.535408448848577925756927779509, 11.08685161137955572248072520465, 11.93359629859719486312321824100, 12.90701471902972991806865397023