Properties

Label 2-12e2-1.1-c7-0-1
Degree $2$
Conductor $144$
Sign $1$
Analytic cond. $44.9834$
Root an. cond. $6.70696$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 270·5-s − 1.11e3·7-s − 5.72e3·11-s − 4.57e3·13-s + 3.65e4·17-s − 5.17e4·19-s + 2.22e4·23-s − 5.22e3·25-s + 1.57e5·29-s + 1.03e5·31-s + 3.00e5·35-s − 9.48e4·37-s − 6.59e5·41-s + 7.57e4·43-s + 4.05e5·47-s + 4.13e5·49-s + 1.34e6·53-s + 1.54e6·55-s − 1.30e6·59-s + 1.83e6·61-s + 1.23e6·65-s − 1.36e6·67-s + 2.71e6·71-s + 2.86e6·73-s + 6.36e6·77-s + 1.12e6·79-s + 5.91e6·83-s + ⋯
L(s)  = 1  − 0.965·5-s − 1.22·7-s − 1.29·11-s − 0.576·13-s + 1.80·17-s − 1.73·19-s + 0.381·23-s − 0.0668·25-s + 1.19·29-s + 0.626·31-s + 1.18·35-s − 0.307·37-s − 1.49·41-s + 0.145·43-s + 0.569·47-s + 0.501·49-s + 1.24·53-s + 1.25·55-s − 0.826·59-s + 1.03·61-s + 0.557·65-s − 0.556·67-s + 0.899·71-s + 0.863·73-s + 1.58·77-s + 0.257·79-s + 1.13·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(44.9834\)
Root analytic conductor: \(6.70696\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 144,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.7450879553\)
\(L(\frac12)\) \(\approx\) \(0.7450879553\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 54 p T + p^{7} T^{2} \)
7 \( 1 + 1112 T + p^{7} T^{2} \)
11 \( 1 + 5724 T + p^{7} T^{2} \)
13 \( 1 + 4570 T + p^{7} T^{2} \)
17 \( 1 - 36558 T + p^{7} T^{2} \)
19 \( 1 + 51740 T + p^{7} T^{2} \)
23 \( 1 - 22248 T + p^{7} T^{2} \)
29 \( 1 - 157194 T + p^{7} T^{2} \)
31 \( 1 - 103936 T + p^{7} T^{2} \)
37 \( 1 + 94834 T + p^{7} T^{2} \)
41 \( 1 + 659610 T + p^{7} T^{2} \)
43 \( 1 - 75772 T + p^{7} T^{2} \)
47 \( 1 - 405648 T + p^{7} T^{2} \)
53 \( 1 - 1346274 T + p^{7} T^{2} \)
59 \( 1 + 1303884 T + p^{7} T^{2} \)
61 \( 1 - 30062 p T + p^{7} T^{2} \)
67 \( 1 + 1369388 T + p^{7} T^{2} \)
71 \( 1 - 2714040 T + p^{7} T^{2} \)
73 \( 1 - 2868794 T + p^{7} T^{2} \)
79 \( 1 - 1129648 T + p^{7} T^{2} \)
83 \( 1 - 5912028 T + p^{7} T^{2} \)
89 \( 1 - 897750 T + p^{7} T^{2} \)
97 \( 1 - 13719074 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03944040680793216726893840988, −10.54359844775308336758883427917, −9.943653540384377823857189933523, −8.459850144321774823017567888803, −7.60049363859624918181539666513, −6.45526513890212086058298995863, −5.09429078990005493400703346456, −3.69013738432820489724785638457, −2.64905734908050382120198400344, −0.46876497425959232852878806690, 0.46876497425959232852878806690, 2.64905734908050382120198400344, 3.69013738432820489724785638457, 5.09429078990005493400703346456, 6.45526513890212086058298995863, 7.60049363859624918181539666513, 8.459850144321774823017567888803, 9.943653540384377823857189933523, 10.54359844775308336758883427917, 12.03944040680793216726893840988

Graph of the $Z$-function along the critical line