Properties

Label 2-1440-1.1-c3-0-40
Degree $2$
Conductor $1440$
Sign $-1$
Analytic cond. $84.9627$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s + 4·7-s + 40·11-s − 90·13-s + 70·17-s − 40·19-s + 108·23-s + 25·25-s − 166·29-s + 40·31-s − 20·35-s − 130·37-s + 310·41-s + 268·43-s − 556·47-s − 327·49-s + 370·53-s − 200·55-s + 240·59-s − 130·61-s + 450·65-s − 876·67-s − 840·71-s + 250·73-s + 160·77-s + 880·79-s − 188·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.215·7-s + 1.09·11-s − 1.92·13-s + 0.998·17-s − 0.482·19-s + 0.979·23-s + 1/5·25-s − 1.06·29-s + 0.231·31-s − 0.0965·35-s − 0.577·37-s + 1.18·41-s + 0.950·43-s − 1.72·47-s − 0.953·49-s + 0.958·53-s − 0.490·55-s + 0.529·59-s − 0.272·61-s + 0.858·65-s − 1.59·67-s − 1.40·71-s + 0.400·73-s + 0.236·77-s + 1.25·79-s − 0.248·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(84.9627\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1440,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + p T \)
good7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 40 T + p^{3} T^{2} \)
13 \( 1 + 90 T + p^{3} T^{2} \)
17 \( 1 - 70 T + p^{3} T^{2} \)
19 \( 1 + 40 T + p^{3} T^{2} \)
23 \( 1 - 108 T + p^{3} T^{2} \)
29 \( 1 + 166 T + p^{3} T^{2} \)
31 \( 1 - 40 T + p^{3} T^{2} \)
37 \( 1 + 130 T + p^{3} T^{2} \)
41 \( 1 - 310 T + p^{3} T^{2} \)
43 \( 1 - 268 T + p^{3} T^{2} \)
47 \( 1 + 556 T + p^{3} T^{2} \)
53 \( 1 - 370 T + p^{3} T^{2} \)
59 \( 1 - 240 T + p^{3} T^{2} \)
61 \( 1 + 130 T + p^{3} T^{2} \)
67 \( 1 + 876 T + p^{3} T^{2} \)
71 \( 1 + 840 T + p^{3} T^{2} \)
73 \( 1 - 250 T + p^{3} T^{2} \)
79 \( 1 - 880 T + p^{3} T^{2} \)
83 \( 1 + 188 T + p^{3} T^{2} \)
89 \( 1 - 726 T + p^{3} T^{2} \)
97 \( 1 + 1550 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.880435459045506637699282142544, −7.75149228741522212624482321301, −7.30976620124268879735740080411, −6.39726541743888768211038795511, −5.29154915522744304188234080363, −4.55236781774650986974686604953, −3.59587252137015897535299526699, −2.54113917767193055495123264266, −1.30669693221493768509300630899, 0, 1.30669693221493768509300630899, 2.54113917767193055495123264266, 3.59587252137015897535299526699, 4.55236781774650986974686604953, 5.29154915522744304188234080363, 6.39726541743888768211038795511, 7.30976620124268879735740080411, 7.75149228741522212624482321301, 8.880435459045506637699282142544

Graph of the $Z$-function along the critical line