L(s) = 1 | + (−0.173 − 0.984i)5-s + (0.5 − 0.866i)7-s + (0.766 + 0.642i)9-s + (0.5 + 0.866i)11-s + (−0.766 + 0.642i)17-s + (0.347 − 1.96i)23-s + (−0.939 − 0.342i)35-s + (−0.173 − 0.984i)43-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.766 − 0.642i)55-s + (−0.173 + 0.984i)61-s + (0.939 − 0.342i)63-s + (0.939 + 0.342i)73-s + 0.999·77-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)5-s + (0.5 − 0.866i)7-s + (0.766 + 0.642i)9-s + (0.5 + 0.866i)11-s + (−0.766 + 0.642i)17-s + (0.347 − 1.96i)23-s + (−0.939 − 0.342i)35-s + (−0.173 − 0.984i)43-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.766 − 0.642i)55-s + (−0.173 + 0.984i)61-s + (0.939 − 0.342i)63-s + (0.939 + 0.342i)73-s + 0.999·77-s + ⋯ |
Λ(s)=(=(1444s/2ΓC(s)L(s)(0.756+0.654i)Λ(1−s)
Λ(s)=(=(1444s/2ΓC(s)L(s)(0.756+0.654i)Λ(1−s)
Degree: |
2 |
Conductor: |
1444
= 22⋅192
|
Sign: |
0.756+0.654i
|
Analytic conductor: |
0.720649 |
Root analytic conductor: |
0.848910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1444(849,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1444, ( :0), 0.756+0.654i)
|
Particular Values
L(21) |
≈ |
1.193852765 |
L(21) |
≈ |
1.193852765 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1 |
good | 3 | 1+(−0.766−0.642i)T2 |
| 5 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
| 7 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1+(−0.766+0.642i)T2 |
| 17 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 23 | 1+(−0.347+1.96i)T+(−0.939−0.342i)T2 |
| 29 | 1+(−0.173−0.984i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.766−0.642i)T2 |
| 43 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
| 47 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
| 53 | 1+(0.939+0.342i)T2 |
| 59 | 1+(−0.173+0.984i)T2 |
| 61 | 1+(0.173−0.984i)T+(−0.939−0.342i)T2 |
| 67 | 1+(−0.173−0.984i)T2 |
| 71 | 1+(0.939−0.342i)T2 |
| 73 | 1+(−0.939−0.342i)T+(0.766+0.642i)T2 |
| 79 | 1+(−0.766−0.642i)T2 |
| 83 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 89 | 1+(−0.766+0.642i)T2 |
| 97 | 1+(−0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.657578550575018497446384065862, −8.667460430270846566343263709993, −8.166662536804208817896250103342, −7.15939018981629681069160374730, −6.61857664787464691611245880116, −5.16782434056809346188552814760, −4.44584563969055642202848499214, −4.08591757090576855183888262331, −2.22966226946056225556464826614, −1.18261387442914511522637451506,
1.56033483914506031062019341689, 2.90531903490272118231621679504, 3.63255962710652532149526077022, 4.79951486384512001158566651136, 5.81411447069883320557557037233, 6.61480820465365939561459036228, 7.28416328862524800532997119226, 8.201256778679885632052242881099, 9.177587320676378765366627570587, 9.602402202595463281478134415015