L(s) = 1 | + (−0.173 − 0.984i)5-s + (0.5 − 0.866i)7-s + (0.766 + 0.642i)9-s + (0.5 + 0.866i)11-s + (−0.766 + 0.642i)17-s + (0.347 − 1.96i)23-s + (−0.939 − 0.342i)35-s + (−0.173 − 0.984i)43-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.766 − 0.642i)55-s + (−0.173 + 0.984i)61-s + (0.939 − 0.342i)63-s + (0.939 + 0.342i)73-s + 0.999·77-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)5-s + (0.5 − 0.866i)7-s + (0.766 + 0.642i)9-s + (0.5 + 0.866i)11-s + (−0.766 + 0.642i)17-s + (0.347 − 1.96i)23-s + (−0.939 − 0.342i)35-s + (−0.173 − 0.984i)43-s + (0.5 − 0.866i)45-s + (−0.766 − 0.642i)47-s + (0.766 − 0.642i)55-s + (−0.173 + 0.984i)61-s + (0.939 − 0.342i)63-s + (0.939 + 0.342i)73-s + 0.999·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.193852765\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193852765\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 5 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.347 + 1.96i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.657578550575018497446384065862, −8.667460430270846566343263709993, −8.166662536804208817896250103342, −7.15939018981629681069160374730, −6.61857664787464691611245880116, −5.16782434056809346188552814760, −4.44584563969055642202848499214, −4.08591757090576855183888262331, −2.22966226946056225556464826614, −1.18261387442914511522637451506,
1.56033483914506031062019341689, 2.90531903490272118231621679504, 3.63255962710652532149526077022, 4.79951486384512001158566651136, 5.81411447069883320557557037233, 6.61480820465365939561459036228, 7.28416328862524800532997119226, 8.201256778679885632052242881099, 9.177587320676378765366627570587, 9.602402202595463281478134415015