L(s) = 1 | + (−0.173 − 0.984i)2-s + (−0.939 + 0.342i)4-s + (1.52 + 0.553i)5-s + (0.5 + 0.866i)8-s + (0.173 − 0.984i)9-s + (0.280 − 1.59i)10-s + (−0.473 − 0.397i)13-s + (0.766 − 0.642i)16-s + (0.107 + 0.608i)17-s − 0.999·18-s − 1.61·20-s + (1.23 + 1.04i)25-s + (−0.309 + 0.535i)26-s + (−0.107 + 0.608i)29-s + (−0.766 − 0.642i)32-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)2-s + (−0.939 + 0.342i)4-s + (1.52 + 0.553i)5-s + (0.5 + 0.866i)8-s + (0.173 − 0.984i)9-s + (0.280 − 1.59i)10-s + (−0.473 − 0.397i)13-s + (0.766 − 0.642i)16-s + (0.107 + 0.608i)17-s − 0.999·18-s − 1.61·20-s + (1.23 + 1.04i)25-s + (−0.309 + 0.535i)26-s + (−0.107 + 0.608i)29-s + (−0.766 − 0.642i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.191119298\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.191119298\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.173 + 0.984i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 5 | \( 1 + (-1.52 - 0.553i)T + (0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.473 + 0.397i)T + (0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.107 - 0.608i)T + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (0.107 - 0.608i)T + (-0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.61T + T^{2} \) |
| 41 | \( 1 + (-1.23 + 1.04i)T + (0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + (1.52 - 0.553i)T + (0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (0.580 - 0.211i)T + (0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (1.23 - 1.04i)T + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-1.23 - 1.04i)T + (0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (0.107 + 0.608i)T + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.494338238435604446398431468483, −9.353502033758122239818988117750, −8.213127464883290743566880873220, −7.14368547156936549599215152178, −6.14442237819495330014886018958, −5.49987100529981203361772358070, −4.32896981252041118646426137327, −3.22548490183505783395225855370, −2.41574862324661221882492003024, −1.33185650954271832206818610862,
1.44165963038130625532282986764, 2.60288029160539535657622058719, 4.47674225529545727972770462152, 4.95649827089980103883908412616, 5.85817761014699889423004075525, 6.42565472483650535477958846262, 7.53960310364801222676985530762, 8.107607064305884285592160650511, 9.359436295449473931262726769049, 9.429808463221714953803934245684