Properties

Label 2-1445-1.1-c1-0-35
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.311·2-s + 2.21·3-s − 1.90·4-s + 5-s + 0.688·6-s − 1.59·7-s − 1.21·8-s + 1.90·9-s + 0.311·10-s + 1.31·11-s − 4.21·12-s + 3.52·13-s − 0.495·14-s + 2.21·15-s + 3.42·16-s + 0.592·18-s + 4.42·19-s − 1.90·20-s − 3.52·21-s + 0.407·22-s + 4.96·23-s − 2.68·24-s + 25-s + 1.09·26-s − 2.42·27-s + 3.03·28-s − 8.42·29-s + ⋯
L(s)  = 1  + 0.219·2-s + 1.27·3-s − 0.951·4-s + 0.447·5-s + 0.281·6-s − 0.601·7-s − 0.429·8-s + 0.634·9-s + 0.0983·10-s + 0.395·11-s − 1.21·12-s + 0.977·13-s − 0.132·14-s + 0.571·15-s + 0.857·16-s + 0.139·18-s + 1.01·19-s − 0.425·20-s − 0.769·21-s + 0.0869·22-s + 1.03·23-s − 0.548·24-s + 0.200·25-s + 0.215·26-s − 0.467·27-s + 0.572·28-s − 1.56·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.540134109\)
\(L(\frac12)\) \(\approx\) \(2.540134109\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 0.311T + 2T^{2} \)
3 \( 1 - 2.21T + 3T^{2} \)
7 \( 1 + 1.59T + 7T^{2} \)
11 \( 1 - 1.31T + 11T^{2} \)
13 \( 1 - 3.52T + 13T^{2} \)
19 \( 1 - 4.42T + 19T^{2} \)
23 \( 1 - 4.96T + 23T^{2} \)
29 \( 1 + 8.42T + 29T^{2} \)
31 \( 1 - 7.73T + 31T^{2} \)
37 \( 1 - 7.05T + 37T^{2} \)
41 \( 1 - 3.67T + 41T^{2} \)
43 \( 1 + 2.47T + 43T^{2} \)
47 \( 1 - 3.33T + 47T^{2} \)
53 \( 1 - 9.18T + 53T^{2} \)
59 \( 1 + 1.37T + 59T^{2} \)
61 \( 1 - 15.4T + 61T^{2} \)
67 \( 1 + 9.13T + 67T^{2} \)
71 \( 1 + 10.5T + 71T^{2} \)
73 \( 1 - 5.57T + 73T^{2} \)
79 \( 1 - 7.87T + 79T^{2} \)
83 \( 1 + 7.19T + 83T^{2} \)
89 \( 1 - 11.6T + 89T^{2} \)
97 \( 1 + 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.472957450205911052178666138706, −8.816344605301828603035142672506, −8.188598267792485651625608484590, −7.24359808932287437442989331704, −6.14508775725909714245518178337, −5.36661343824730929765580468970, −4.15538079896070001771211144446, −3.45481291859106040056487329264, −2.68368124237410528312024851070, −1.13750599423387796901865828595, 1.13750599423387796901865828595, 2.68368124237410528312024851070, 3.45481291859106040056487329264, 4.15538079896070001771211144446, 5.36661343824730929765580468970, 6.14508775725909714245518178337, 7.24359808932287437442989331704, 8.188598267792485651625608484590, 8.816344605301828603035142672506, 9.472957450205911052178666138706

Graph of the $Z$-function along the critical line