Properties

Label 2-1445-1.1-c1-0-75
Degree $2$
Conductor $1445$
Sign $1$
Analytic cond. $11.5383$
Root an. cond. $3.39681$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51·2-s + 1.25·3-s + 4.31·4-s + 5-s + 3.15·6-s + 1.61·7-s + 5.80·8-s − 1.42·9-s + 2.51·10-s + 3.28·11-s + 5.40·12-s − 6.35·13-s + 4.05·14-s + 1.25·15-s + 5.96·16-s − 3.58·18-s − 0.747·19-s + 4.31·20-s + 2.02·21-s + 8.25·22-s − 0.143·23-s + 7.28·24-s + 25-s − 15.9·26-s − 5.55·27-s + 6.96·28-s + 8.80·29-s + ⋯
L(s)  = 1  + 1.77·2-s + 0.724·3-s + 2.15·4-s + 0.447·5-s + 1.28·6-s + 0.610·7-s + 2.05·8-s − 0.475·9-s + 0.794·10-s + 0.990·11-s + 1.56·12-s − 1.76·13-s + 1.08·14-s + 0.323·15-s + 1.49·16-s − 0.844·18-s − 0.171·19-s + 0.964·20-s + 0.442·21-s + 1.76·22-s − 0.0298·23-s + 1.48·24-s + 0.200·25-s − 3.13·26-s − 1.06·27-s + 1.31·28-s + 1.63·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1445\)    =    \(5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5383\)
Root analytic conductor: \(3.39681\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1445,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.494521329\)
\(L(\frac12)\) \(\approx\) \(6.494521329\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 2.51T + 2T^{2} \)
3 \( 1 - 1.25T + 3T^{2} \)
7 \( 1 - 1.61T + 7T^{2} \)
11 \( 1 - 3.28T + 11T^{2} \)
13 \( 1 + 6.35T + 13T^{2} \)
19 \( 1 + 0.747T + 19T^{2} \)
23 \( 1 + 0.143T + 23T^{2} \)
29 \( 1 - 8.80T + 29T^{2} \)
31 \( 1 + 7.21T + 31T^{2} \)
37 \( 1 - 0.621T + 37T^{2} \)
41 \( 1 + 6.36T + 41T^{2} \)
43 \( 1 + 2.74T + 43T^{2} \)
47 \( 1 - 11.9T + 47T^{2} \)
53 \( 1 - 2.71T + 53T^{2} \)
59 \( 1 + 12.6T + 59T^{2} \)
61 \( 1 - 0.464T + 61T^{2} \)
67 \( 1 - 1.81T + 67T^{2} \)
71 \( 1 - 4.25T + 71T^{2} \)
73 \( 1 + 1.21T + 73T^{2} \)
79 \( 1 - 5.04T + 79T^{2} \)
83 \( 1 + 3.58T + 83T^{2} \)
89 \( 1 - 10.5T + 89T^{2} \)
97 \( 1 + 6.96T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.516133477878105477568880358201, −8.691649066136253688059565302703, −7.63886949275120348369129717056, −6.90072599984722610196515921719, −6.03852194658805362400840550326, −5.14149760331335494837069321185, −4.53545690787018558049178353788, −3.50966834433199825768572092991, −2.62224197978066023265187732722, −1.87575599775952143264366509055, 1.87575599775952143264366509055, 2.62224197978066023265187732722, 3.50966834433199825768572092991, 4.53545690787018558049178353788, 5.14149760331335494837069321185, 6.03852194658805362400840550326, 6.90072599984722610196515921719, 7.63886949275120348369129717056, 8.691649066136253688059565302703, 9.516133477878105477568880358201

Graph of the $Z$-function along the critical line