L(s) = 1 | + 1.74i·2-s + 0.598i·3-s − 1.03·4-s + (2.14 + 0.632i)5-s − 1.04·6-s + 1.03i·7-s + 1.68i·8-s + 2.64·9-s + (−1.10 + 3.73i)10-s + 0.0764·11-s − 0.620i·12-s − 2.86i·13-s − 1.80·14-s + (−0.378 + 1.28i)15-s − 4.99·16-s + ⋯ |
L(s) = 1 | + 1.23i·2-s + 0.345i·3-s − 0.517·4-s + (0.959 + 0.282i)5-s − 0.425·6-s + 0.392i·7-s + 0.594i·8-s + 0.880·9-s + (−0.348 + 1.18i)10-s + 0.0230·11-s − 0.178i·12-s − 0.793i·13-s − 0.483·14-s + (−0.0977 + 0.331i)15-s − 1.24·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.959 - 0.282i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.959 - 0.282i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.161651553\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.161651553\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.14 - 0.632i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 1.74iT - 2T^{2} \) |
| 3 | \( 1 - 0.598iT - 3T^{2} \) |
| 7 | \( 1 - 1.03iT - 7T^{2} \) |
| 11 | \( 1 - 0.0764T + 11T^{2} \) |
| 13 | \( 1 + 2.86iT - 13T^{2} \) |
| 19 | \( 1 + 4.19T + 19T^{2} \) |
| 23 | \( 1 - 5.95iT - 23T^{2} \) |
| 29 | \( 1 - 0.0884T + 29T^{2} \) |
| 31 | \( 1 + 2.42T + 31T^{2} \) |
| 37 | \( 1 - 9.51iT - 37T^{2} \) |
| 41 | \( 1 - 8.37T + 41T^{2} \) |
| 43 | \( 1 + 0.866iT - 43T^{2} \) |
| 47 | \( 1 + 8.33iT - 47T^{2} \) |
| 53 | \( 1 - 4.09iT - 53T^{2} \) |
| 59 | \( 1 - 9.16T + 59T^{2} \) |
| 61 | \( 1 + 0.288T + 61T^{2} \) |
| 67 | \( 1 + 12.8iT - 67T^{2} \) |
| 71 | \( 1 + 13.2T + 71T^{2} \) |
| 73 | \( 1 - 6.54iT - 73T^{2} \) |
| 79 | \( 1 + 10.4T + 79T^{2} \) |
| 83 | \( 1 - 9.70iT - 83T^{2} \) |
| 89 | \( 1 + 0.106T + 89T^{2} \) |
| 97 | \( 1 - 8.56iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.751164325156247212509671406419, −9.001605128357064571007602904290, −8.187081621250340645041570662625, −7.28027903154560661871897915083, −6.66512709826185429290353477784, −5.75846264266799452073220611339, −5.30886435190311632965612087142, −4.23641891354721196359694259328, −2.86085253149387742027925611746, −1.72037164832044642728975470468,
0.885187831939022113109303549363, 1.90324547641347786813789841211, 2.54108822924426999796642964313, 4.04785096208631432341209251359, 4.51050419044368862938148265716, 5.95507616660801762880595150671, 6.71819494306668858996281064124, 7.41317075287230328800974591808, 8.775903652582719636986995166318, 9.321903736721722834415715124292