L(s) = 1 | + 0.783·2-s − 0.544i·3-s − 1.38·4-s − i·5-s − 0.426i·6-s + 1.18i·7-s − 2.65·8-s + 2.70·9-s − 0.783i·10-s − 2.55i·11-s + 0.755i·12-s + 0.368·13-s + 0.931i·14-s − 0.544·15-s + 0.693·16-s + ⋯ |
L(s) = 1 | + 0.554·2-s − 0.314i·3-s − 0.693·4-s − 0.447i·5-s − 0.174i·6-s + 0.449i·7-s − 0.937·8-s + 0.901·9-s − 0.247i·10-s − 0.770i·11-s + 0.218i·12-s + 0.102·13-s + 0.248i·14-s − 0.140·15-s + 0.173·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.685 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.685 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.127169495\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.127169495\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + iT \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 0.783T + 2T^{2} \) |
| 3 | \( 1 + 0.544iT - 3T^{2} \) |
| 7 | \( 1 - 1.18iT - 7T^{2} \) |
| 11 | \( 1 + 2.55iT - 11T^{2} \) |
| 13 | \( 1 - 0.368T + 13T^{2} \) |
| 19 | \( 1 + 6.61T + 19T^{2} \) |
| 23 | \( 1 + 3.86iT - 23T^{2} \) |
| 29 | \( 1 + 2.31iT - 29T^{2} \) |
| 31 | \( 1 + 6.62iT - 31T^{2} \) |
| 37 | \( 1 + 3.17iT - 37T^{2} \) |
| 41 | \( 1 - 7.30iT - 41T^{2} \) |
| 43 | \( 1 + 6.82T + 43T^{2} \) |
| 47 | \( 1 + 7.80T + 47T^{2} \) |
| 53 | \( 1 + 8.01T + 53T^{2} \) |
| 59 | \( 1 + 5.22T + 59T^{2} \) |
| 61 | \( 1 + 8.12iT - 61T^{2} \) |
| 67 | \( 1 + 7.94T + 67T^{2} \) |
| 71 | \( 1 + 11.8iT - 71T^{2} \) |
| 73 | \( 1 + 14.7iT - 73T^{2} \) |
| 79 | \( 1 - 0.813iT - 79T^{2} \) |
| 83 | \( 1 + 3.99T + 83T^{2} \) |
| 89 | \( 1 + 9.14T + 89T^{2} \) |
| 97 | \( 1 + 7.06iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.152298219244336901324930633833, −8.425036210515819691578153004695, −7.82195761822828165957239480836, −6.39423711326786161631666006318, −6.03809044257742858157833659838, −4.81010923488471701119193004347, −4.31997738443418470956530484134, −3.25550405229871162994044800089, −1.93372773280922176716011562389, −0.38373728008802148835521640814,
1.62227292616288565268708111187, 3.13439665797165057830658133416, 4.05287076820741966780665232529, 4.58143758145832021211070452464, 5.48847138854506172372247384546, 6.62635301118760040754233632335, 7.19977184801191285390804712694, 8.302578844820390342839770606940, 9.088322604804690523970771571417, 10.01127044293196854761101536840