L(s) = 1 | − 1.30i·2-s − 0.537i·3-s + 0.299·4-s + 5-s − 0.700·6-s − 1.29·7-s − 2.99i·8-s + 2.71·9-s − 1.30i·10-s + 0.537i·11-s − 0.160i·12-s − 5.71·13-s + 1.69i·14-s − 0.537i·15-s − 3.31·16-s + 6.91i·17-s + ⋯ |
L(s) = 1 | − 0.922i·2-s − 0.310i·3-s + 0.149·4-s + 0.447·5-s − 0.285·6-s − 0.491·7-s − 1.06i·8-s + 0.903·9-s − 0.412i·10-s + 0.161i·11-s − 0.0464i·12-s − 1.58·13-s + 0.452i·14-s − 0.138i·15-s − 0.827·16-s + 1.67i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0556 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0556 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.916560 - 0.866900i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.916560 - 0.866900i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - T \) |
| 29 | \( 1 + (-0.299 - 5.37i)T \) |
good | 2 | \( 1 + 1.30iT - 2T^{2} \) |
| 3 | \( 1 + 0.537iT - 3T^{2} \) |
| 7 | \( 1 + 1.29T + 7T^{2} \) |
| 11 | \( 1 - 0.537iT - 11T^{2} \) |
| 13 | \( 1 + 5.71T + 13T^{2} \) |
| 17 | \( 1 - 6.91iT - 17T^{2} \) |
| 19 | \( 1 + 4.30iT - 19T^{2} \) |
| 23 | \( 1 - 5.01T + 23T^{2} \) |
| 31 | \( 1 - 8.44iT - 31T^{2} \) |
| 37 | \( 1 - 7.98iT - 37T^{2} \) |
| 41 | \( 1 - 0.698iT - 41T^{2} \) |
| 43 | \( 1 + 10.2iT - 43T^{2} \) |
| 47 | \( 1 - 0.537iT - 47T^{2} \) |
| 53 | \( 1 - 7.11T + 53T^{2} \) |
| 59 | \( 1 + 7.71T + 59T^{2} \) |
| 61 | \( 1 + 5.91iT - 61T^{2} \) |
| 67 | \( 1 + 9.01T + 67T^{2} \) |
| 71 | \( 1 + 4.28T + 71T^{2} \) |
| 73 | \( 1 + 6.21iT - 73T^{2} \) |
| 79 | \( 1 + 10.2iT - 79T^{2} \) |
| 83 | \( 1 + 2.70T + 83T^{2} \) |
| 89 | \( 1 + 9.67iT - 89T^{2} \) |
| 97 | \( 1 - 2.07iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.67462688514460083704161215431, −12.08343053442731732988021798043, −10.61572978638732808332179461419, −10.12079407181254602969244465614, −9.035105806642557997769587241157, −7.25194686903495725995506576691, −6.58236105731666068803614645463, −4.76583666621125208548521017164, −3.10748322824270907517974505288, −1.69718507159421331233031470623,
2.57949465807300233005271469073, 4.65466071700818048037903256614, 5.77454810245506480204364415517, 7.02240022142731459812814913238, 7.66425740271153784813463286524, 9.354268791870579598614692943461, 9.960339939109492255377409886476, 11.31273117567351878626936998791, 12.41018957565350608735111252967, 13.52009534586050623017846878307